

RUHR-UNIVERSITÄT BOCHUM Optimal Security Proofs for Full-Domain Hash, revisited

Cambridge, EUROCRYPT 2012

Saqib A. Kakvi Eike Kiltz Foundations of Cryptography Chair for Cryptography and IT Security

1 Introduction

2 Our results

3 Extensions

RUHR-UNIVERSITÄT BOCHUM

RSA-Full Domain Hash Signatures

§ RSA-Full Domain Hash (RSA-FDH) was introduced by Bellare and Rogaway [BelRog93] and is arguably one of the most important signature schemes based on RSA.

RSA-Full Domain Hash Signatures

§ RSA-Full Domain Hash (RSA-FDH) was introduced by Bellare and Rogaway [BelRog93] and is arguably one of the most important signature schemes based on RSA.

	<pre>procedure Sign(sk, m)</pre>
procedure KeyGen	return $\sigma = H(m)^{rac{1}{e}} \mod N$
$p,q\in_{_{\!\!R}}\mathbb{P}$, $N=pq$	
$e \in_{R} \mathbb{Z}_{\varphi(N)}$	procedure Verify (pk, m, σ)
Pick $H: \{0,1\}^* \to \mathbb{Z}_N$	$ \text{ if } \sigma^e \mod \textit{N} = \textit{H}(\textit{m}) \\$
$return\;(\mathit{pk}=(\mathit{N}, e, \mathit{H}), \mathit{sk}=(\mathit{p}, q))$	then return 1
	else return 0

RSA-Full Domain Hash Signatures

§ RSA-Full Domain Hash (RSA-FDH) was introduced by Bellare and Rogaway [BelRog93] and is arguably one of the most important signature schemes based on RSA.

	<pre>procedure Sign(sk, m)</pre>
procedure KeyGen	return $\sigma = H(m)^{rac{1}{e}} \mod N$
$p,q\in_{_{\!\!R}}\mathbb{P}$, $N=pq$	
$e \in_{R} \mathbb{Z}_{\varphi(N)}$	procedure Verify (pk, m, σ)
Pick $H: \{0,1\}^* \to \mathbb{Z}_N$	$ \text{ if } \sigma^e \mod \textit{N} = \textit{H}(\textit{m}) \\$
$return\;(\mathit{pk}=(\mathit{N}, e, \mathit{H}), \mathit{sk}=(\mathit{p}, q))$	then return 1
	else return 0

§ RSA-FDH signatures are unique.

$_{\S}$ We would like a tight security proof (UF-CMA) for RSA-FDH.

RSA-FDH|Horst Görtz Institute for IT-Security|Cambridge|EUROCRYPT 2012

§ All known proofs are non-tight

- § All known proofs are non-tight
- § In practice, people use a 1024-bit modulus, but in theory?

- $_{\S}$ We would like a tight security proof (UF-CMA) for RSA-FDH.
- § All known proofs are non-tight
- § In practice, people use a 1024-bit modulus, but in theory?
- \S If RSA is (t, ε') -hard, then RSA-FDH is $(q_h, q_s, t, \varepsilon)$ -secure

Security Proof	Security Loss ε/ε'	Equivalent RSA modulus
----------------	--	------------------------

- $_{\S}$ We would like a tight security proof (UF-CMA) for RSA-FDH.
- § All known proofs are non-tight
- § In practice, people use a 1024-bit modulus, but in theory?
- \S If RSA is (t, $\varepsilon')$ -hard, then RSA-FDH is (q_h, q_s, t, $\varepsilon)$ -secure

Security Proof	Security Loss ε/ε'	Equivalent RSA modulus
Ideal	1	pprox 1024 bits

- $_{\S}$ We would like a tight security proof (UF-CMA) for RSA-FDH.
- § All known proofs are non-tight
- § In practice, people use a 1024-bit modulus, but in theory?
- \S If RSA is (t, $\varepsilon')$ -hard, then RSA-FDH is (q_h, q_s, t, $\varepsilon)$ -secure

Security Proof	Security Loss ε/ε'	Equivalent RSA modulus
- Ideal	1	1024 bits

- § We would like a tight security proof (UF-CMA) for RSA-FDH.
- § All known proofs are non-tight
- § In practice, people use a 1024-bit modulus, but in theory?
- \S If RSA is (t,ε') -hard, then RSA-FDH is (q_h,q_s,t,ε) -secure

Security Proof	Security Loss ε/ε'	Equivalent RSA modulus
- Ideal	1	1024 bits
[BelRog93]	$q_hpprox 2^{60}$	pprox 200 bits

- $_{\S}$ We would like a tight security proof (UF-CMA) for RSA-FDH.
- § All known proofs are non-tight
- § In practice, people use a 1024-bit modulus, but in theory?
- $_{\S}$ If RSA is (t, $\varepsilon')$ -hard, then RSA-FDH is (q_h, q_s, t, $\varepsilon)$ -secure

Security Proof	Security Loss ε/ε'	Equivalent RSA modulus
- Ideal	1	1024 bits
[BelRog93]	$q_hpprox 2^{60}$	pprox 200 bits
[Coron00]	$q_spprox 2^{30}$	pprox 500 bits

- \S We would like a tight security proof (UF-CMA) for RSA-FDH.
- § All known proofs are non-tight
- § In practice, people use a 1024-bit modulus, but in theory?
- \S If RSA is (t, ε') -hard, then RSA-FDH is $(q_h, q_s, t, \varepsilon)$ -secure

Security Proof	Security Loss ε/ε'	Equivalent RSA modulus
Ideal	1	1024 bits
[BelRog93]	$q_hpprox 2^{60}$	pprox 200 bits
[Coron00]	$q_spprox 2^{30}$	pprox 500 bits
(PSS) [BelRog96]	1	pprox 1024 bits

- \S We would like a tight security proof (UF-CMA) for RSA-FDH.
- § All known proofs are non-tight
- § In practice, people use a 1024-bit modulus, but in theory?
- \S If RSA is (t, ε') -hard, then RSA-FDH is $(q_h, q_s, t, \varepsilon)$ -secure

Security Proof	Security Loss ε/ε'	Equivalent RSA modulus
- Ideal	1	1024 bits
[BelRog93]	$q_hpprox 2^{60}$	pprox 200 bits
[Coron00]	$q_spprox 2^{30}$	pprox 500 bits
(PSS) [BelRog96]	1	pprox 1024 bits

§ Can RSA-FDH be tightly secure?

- § We would like a tight security proof (UF-CMA) for RSA-FDH.
- § All known proofs are non-tight
- \S In practice, people use a 1024-bit modulus, but in theory?
- \S If RSA is (t, ε') -hard, then RSA-FDH is $(q_h, q_s, t, \varepsilon)$ -secure

Security Proof	Security Loss ε/ε'	Equivalent RSA modulus
Ideal	1	1024 bits
[BelRog93]	$q_hpprox 2^{60}$	pprox 200 bits
[Coron00]	$q_spprox 2^{30}$	pprox 500 bits
(PSS) [BelRog96]	1	pprox 1024 bits

- § Can RSA-FDH be tightly secure?
- $_{\S}$ Exactly 10 years ago at EUROCRYPT 2002 in Amsterdam, Coron answered this by showing that a loss of a factor of q_s is optimal

1 Introduction

2 Our results

3 Extensions

4 Conclusions

 ${}_{\S}$ We revisit Coron's impossibility result

RSA-FDH|Horst Görtz Institute for IT-Security|Cambridge|EUROCRYPT 2012

- ${}_{\S}$ We revisit Coron's impossibility result
 - $\circ~$ Uncover a subtle flaw

- § We revisit Coron's impossibility result
 - Uncover a subtle flaw
 - Proof does not hold for small e

- § We revisit Coron's impossibility result
 - Uncover a subtle flaw
 - $\circ~$ Proof does not hold for small e
- \S We show a tight proof for small e

- ${}_{\S}$ We revisit Coron's impossibility result
 - Uncover a subtle flaw
 - Proof does not hold for small e
- \S We show a tight proof for small e
 - $\circ~$ Proof is to $\Phi\text{-Hiding}$, which is stronger than RSA

- § We revisit Coron's impossibility result
 - Uncover a subtle flaw
 - Proof does not hold for small e
- \S We show a tight proof for small e
 - $_\circ~$ Proof is to $\Phi\text{-Hiding}$, which is stronger than RSA
- \S We then show some generalizations and extensions.

Theorem 1 (Coron)

Theorem 1 (Coron)

Theorem 1 (Coron)

Theorem 1 (Coron)

Theorem 1 (Coron)

Theorem 1 (Coron)

Theorem 1 (Coron)

Theorem 1 (Coron)

Theorem 1 (Coron)

Theorem 1 (Coron)

Theorem 1 (Coron)

Theorem 1 (Coron)

Theorem 1 (Coron)

Fixing Coron's Proof

Theorem 2 (Coron Corrected)

If there is a reduction \mathcal{R} from RSA-FDH to inverting RSA, with security loss less than q_s , then we can efficiently invert RSA.

Fixing Coron's Proof

Theorem 2 (Coron Corrected)

If there is a reduction \mathcal{R} from RSA-FDH to inverting RSA, with security loss less than q_s , then we can efficiently invert RSA.

Fixing Coron's Proof

Theorem 2 (Coron Corrected)

If there is a reduction \mathcal{R} from RSA-FDH to inverting certified RSA, with security loss less than q_s , then we can efficiently invert RSA.

§ We say RSA is certified if given a public key (N, e), we can decide in polynomial time if the RSA function $f_{(N,e)}(x) = x^e \mod N$ is a permutation. [BelYun03]

- § We say RSA is certified if given a public key (N, e), we can decide in polynomial time if the RSA function $f_{(N,e)}(x) = x^e \mod N$ is a permutation. [BelYun03]
- § Need to decide if $e|\varphi(N)$ or if $gcd(e,\varphi(N)) = 1$.

- § We say RSA is certified if given a public key (N, e), we can decide in polynomial time if the RSA function $f_{(N,e)}(x) = x^e \mod N$ is a permutation. [BelYun03]
- § Need to decide if $e|\varphi(N)$ or if $gcd(e,\varphi(N)) = 1$.
- § This is easy for prime e > N.

- § We say RSA is certified if given a public key (N, e), we can decide in polynomial time if the RSA function $f_{(N,e)}(x) = x^e \mod N$ is a permutation. [BelYun03]
- § Need to decide if $e|\varphi(N)$ or if $gcd(e,\varphi(N)) = 1$.
- § This is easy for prime e > N.
- § Thought to be hard for prime $e < N^{0.25}$.

- § We say RSA is certified if given a public key (N, e), we can decide in polynomial time if the RSA function $f_{(N,e)}(x) = x^e \mod N$ is a permutation. [BelYun03]
- § Need to decide if $e|\varphi(N)$ or if $gcd(e,\varphi(N)) = 1$.
- § This is easy for prime e > N.
- § Thought to be hard for prime $e < N^{0.25}$.
- § Overall, we have:

- § We say RSA is certified if given a public key (N, e), we can decide in polynomial time if the RSA function $f_{(N,e)}(x) = x^e \mod N$ is a permutation. [BelYun03]
- § Need to decide if $e|\varphi(N)$ or if $gcd(e,\varphi(N)) = 1$.
- § This is easy for prime e > N.
- § Thought to be hard for prime $e < N^{0.25}$.
- § Overall, we have:

- § We say RSA is certified if given a public key (N, e), we can decide in polynomial time if the RSA function $f_{(N,e)}(x) = x^e \mod N$ is a permutation. [BelYun03]
- § Need to decide if $e|\varphi(N)$ or if $gcd(e,\varphi(N)) = 1$.
- § This is easy for prime e > N.
- § Thought to be hard for prime $e < N^{0.25}$.
- § Overall, we have:

- § We say RSA is certified if given a public key (N, e), we can decide in polynomial time if the RSA function $f_{(N,e)}(x) = x^e \mod N$ is a permutation. [BelYun03]
- § Need to decide if $e|\varphi(N)$ or if $gcd(e,\varphi(N)) = 1$.
- § This is easy for prime e > N.
- § Thought to be hard for prime $e < N^{0.25}$.
- § Overall, we have:

	LOSSY	???????????????????????????????????????	CERTIFIED	
e	3 N ⁰	.25 /	N	

- § We say RSA is certified if given a public key (N, e), we can decide in polynomial time if the RSA function $f_{(N,e)}(x) = x^e \mod N$ is a permutation. [BelYun03]
- § Need to decide if $e|\varphi(N)$ or if $gcd(e,\varphi(N)) = 1$.
- § This is easy for prime e > N.
- § Thought to be hard for prime $e < N^{0.25}$.
- § Overall, we have:

	LOSSY	[KKM12]	CERTIFIED	
е	3 N ⁰	.25 /	N	

§ A function is said to be lossy if there exists an alternate KeyGen algorithm that outputs a lossy key [PeiWat08].

- § A function is said to be lossy if there exists an alternate KeyGen algorithm that outputs a lossy key [PeiWat08].
- $_{\S}\,$ A lossy keys are computationally indistinguishable real keys

- § A function is said to be lossy if there exists an alternate KeyGen algorithm that outputs a lossy key [PeiWat08].
- $_{\S}\,$ A lossy keys are computationally indistinguishable real keys
- ${}_{\S}$ Lossy keys give a function where the range is smaller than the domain.

- § A function is said to be lossy if there exists an alternate KeyGen algorithm that outputs a lossy key [PeiWat08].
- $_{\S}\,$ A lossy keys are computationally indistinguishable real keys
- ${}_{\S}$ Lossy keys give a function where the range is smaller than the domain.
- § In particular for RSA, the lossy function is *e*-to-1.

§ RSA was shown to be lossy under Φ -Hiding [KOS10].

RSA-FDH|Horst Görtz Institute for IT-Security|Cambridge|EUROCRYPT 2012

11/20

Lossines of RSA

- § RSA was shown to be lossy under Φ -Hiding [KOS10].
- § Φ-Hiding was introduced in 1999 by Cachin, Micali and Stadler [CMS99].

- \S RSA was shown to be lossy under Φ -Hiding [KOS10].
- § Φ-Hiding was introduced in 1999 by Cachin, Micali and Stadler [CMS99].
- § Φ-Hiding states that given N and a prime $e < N^{0.25}$ it is hard to distinguish $e|\varphi(N)$ and $gcd(e, \varphi(N)) = 1$.

Main Theorem

Main Theorem

If Φ -Hiding is (t', ε') -hard, then RSA-FDH is $(q_h, q_s, t, \varepsilon)$ -secure, for any q_h, q_s , with $t \approx t', \varepsilon \approx 2\varepsilon'$.

§ GAME0 Standard UF-CMA

Main Theorem

- § GAME0 Standard UF-CMA
- § GAME1 Simulate *H* such that sign no longer needs *sk*. Simulation knows exactly 1 valid signature for each message

Main Theorem

- § GAME0 Standard UF-CMA
- § GAME1 Simulate *H* such that sign no longer needs *sk*. Simulation knows exactly 1 valid signature for each message
- § GAME2 KeyGen is switched from real to lossy. Now each message has exactly *e* valid signatures.

Main Theorem

- § GAME0 Standard UF-CMA
- § GAME1 Simulate *H* such that sign no longer needs *sk*. Simulation knows exactly 1 valid signature for each message
- § GAME2 KeyGen is switched from real to lossy. Now each message has exactly *e* valid signatures.
- § A forgery (m^*, σ^*) gives a collision in the RSA function with probability $1 \frac{1}{e}$, allowing us to factor or break Φ -Hiding .

Main Theorem

- § GAME0 Standard UF-CMA
- § GAME1 Simulate *H* such that sign no longer needs *sk*. Simulation knows exactly 1 valid signature for each message
- § GAME2 KeyGen is switched from real to lossy. Now each message has exactly *e* valid signatures.
- § A forgery (m^*, σ^*) gives a collision in the RSA function with probability $1 \frac{1}{e}$, allowing us to factor or break Φ -Hiding .
- § The final security loss is approximately 2 = O(1).

Implications of our results

 $_{\$}\,$ If we assume that solving $\Phi\text{-Hiding}$ is equivalent to inverting RSA, then:

Security Proof	Security Loss ε/ε'	Equivalent RSA modulus	
- Ideal	1	1024 bits	
[BelRog93]	$q_hpprox 2^{60}$	pprox 200 bits	
[Coron00]	$q_spprox 2^{30}$	pprox 500 bits	

Implications of our results

 $_{\$}\,$ If we assume that solving $\Phi\text{-Hiding}$ is equivalent to inverting RSA, then:

Security Proof	Security Loss ε/ε'	Equivalent RSA modulus	
This work	1	pprox 1024 bits	
[BelRog93]	$q_hpprox 2^{60}$	pprox 200 bits	
[Coron00]	$q_spprox 2^{30}$	pprox 500 bits	

1 Introduction

2 Our results

3 Extensions

RUHR-UNIVERSITÄT BOCHUM

Extensions: Generalizations

 ${}_{\S}$ We can extend our main theorem to any certified trapdoor permutation

Theorem 3

Extensions: Generalizations

 ${}_{\S}\,$ We can extend our main theorem to any certified trapdoor permutation

Theorem 3

If TDP is (t', ε') -lossy, then TDP-FDH is $(q_h, q_s, t, \varepsilon)$ -secure, for any q_h, q_s , with $t \approx t', \varepsilon \approx 2\varepsilon'$.

 $_{\$}$ We can show impossibility for any hard problem Π and any certified unique signature scheme $\Sigma.$

Theorem 4

If there is a reduction \mathcal{R} from Σ to solving Π , with security loss less than q_s , then we can efficiently solve Π .

§ Our results also extend to PSS, in particular PSS-R.

RSA-FDH|Horst Görtz Institute for IT-Security|Cambridge|EUROCRYPT 2012

Extensions: PSS

§ Our results also extend to PSS, in particular PSS-R.

Extensions: PSS

§ Our results also extend to PSS, in particular PSS-R.

Theorem 5

If Φ -Hiding is (t', ε') -hard, then RSA-PSS-R is $(q_h, q_s, t, \varepsilon)$ -secure, for any q_h, q_s , with $t \approx t', \varepsilon \approx 2 \cdot \varepsilon' + \frac{(q_h+q_s)^2}{2^{k_1}}$

RSA-FDH|Horst Görtz Institute for IT-Security|Cambridge|EUROCRYPT 2012

Extensions: PSS with message recovery

§ When using signatures with recovery we want to minimize band-width.

Extensions: PSS with message recovery

- § When using signatures with recovery we want to minimize bandwidth.
- § Signer needs only to send the "enhanced signature".

Extensions: PSS with message recovery

- § When using signatures with recovery we want to minimize bandwidth.
- § Signer needs only to send the "enhanced signature".
- $_{\S}$ Verify is replaced by Recover, which outputs message or $\bot.$

- § When using signatures with recovery we want to minimize bandwidth.
- § Signer needs only to send the "enhanced signature".
- \S Verify is replaced by Recover, which outputs message or \bot .
- § We use a measure called overhead, which is the difference in size between the message and the "enhanced signature".

- § When using signatures with recovery we want to minimize bandwidth.
- § Signer needs only to send the "enhanced signature".
- \S Verify is replaced by Recover, which outputs message or \bot .
- § We use a measure called overhead, which is the difference in size between the message and the "enhanced signature".

- § When using signatures with recovery we want to minimize bandwidth.
- § Signer needs only to send the "enhanced signature".
- \S Verify is replaced by Recover, which outputs message or \bot .
- § We use a measure called overhead, which is the difference in size between the message and the "enhanced signature".

Security Proof	Randomness	Padding	Total overhead
Bellare-Rogaway [BR96]	160	160	320
Coron [Cor02]	30	160	190
This work	0	160	160

Table: Total overhead using RSA-PSS-R for 80 bit security.

- § When using signatures with recovery we want to minimize bandwidth.
- § Signer needs only to send the "enhanced signature".
- $_{\S}$ Verify is replaced by Recover, which outputs message or $\perp.$
- § We use a measure called overhead, which is the difference in size between the message and the "enhanced signature".

Security Proof	Randomness	Padding	Total overhead
Bellare-Rogaway [BR96]	160	160	320
Coron [Cor02]	30	160	190
This work	0	160	160

Table: Total overhead using RSA-PSS-R for 80 bit security.

§ PSS-R comparable to BLS signatures.

RSA-FDH|Horst Görtz Institute for IT-Security|Cambridge|EUROCRYPT 2012

1 Introduction

2 Our results

3 Extensions

§ Revisited and corrected Coron's proof.

- § Revisited and corrected Coron's proof.
- \S Tight security proof for RSA-FDH with small exponents.

Conclusion

- § Tight security proof for RSA-FDH with small exponents.
- § Extensions to TDP and other problems.

Conclusion

RUB

- § Revisited and corrected Coron's proof.
- § Tight security proof for RSA-FDH with small exponents.
- \S Extensions to TDP and other problems.
- § Extensions to PSS and PSS-R.

RUHR-UNIVERSITÄT BOCHUM

Many thanks for your attention!

QUESTIONS?

RSA-FDH|Horst Görtz Institute for IT-Security|Cambridge|EUROCRYPT 2012