
HPC in Cryptanalysis
A short tutorial

Antoine Joux

Eurocrypt 2012
April 16th,2012

Antoine Joux HPC in Cryptanalysis



Why “HPC in Cryptanalysis” ?

Historical link

Background activity in support of research

Fun (but sometime frustrating)

Antoine Joux HPC in Cryptanalysis



Why “HPC in Cryptanalysis” ?

Historical link

Background activity in support of research

Fun (but sometime frustrating)

Antoine Joux HPC in Cryptanalysis



Why “HPC in Cryptanalysis” ?

Historical link

Background activity in support of research

Fun (but sometime frustrating)

Antoine Joux HPC in Cryptanalysis



Why “HPC in Cryptanalysis” ?

Historical link

Background activity in support of research

Fun (but sometime frustrating)

Antoine Joux HPC in Cryptanalysis



How special are computations in Cryptanalysis ?

Aimed at record breaking / new algorithms benchmarking

No real need for reusability

Have to be performed on whatever is available

Computations are easy to check

Antoine Joux HPC in Cryptanalysis



How special are computations in Cryptanalysis ?

Aimed at record breaking / new algorithms benchmarking

No real need for reusability

Have to be performed on whatever is available

Computations are easy to check

Antoine Joux HPC in Cryptanalysis



How special are computations in Cryptanalysis ?

Aimed at record breaking / new algorithms benchmarking

No real need for reusability

Have to be performed on whatever is available

Computations are easy to check

Antoine Joux HPC in Cryptanalysis



How special are computations in Cryptanalysis ?

Aimed at record breaking / new algorithms benchmarking

No real need for reusability

Have to be performed on whatever is available

Computations are easy to check

Antoine Joux HPC in Cryptanalysis



How special are computations in Cryptanalysis ?

Aimed at record breaking / new algorithms benchmarking

No real need for reusability

Have to be performed on whatever is available

Computations are easy to check

Antoine Joux HPC in Cryptanalysis



Main steps

Algorithmic starting point

Validation by toy implementation

Find computing power / Choose target computation

Program / Debug / Optimize

Run and Manage computation

Antoine Joux HPC in Cryptanalysis



Main steps

Algorithmic starting point

Validation by toy implementation

Find computing power / Choose target computation

Program / Debug / Optimize

Run and Manage computation

Antoine Joux HPC in Cryptanalysis



Main steps

Algorithmic starting point
Validation by toy implementation

Find computing power / Choose target computation

Program / Debug / Optimize

Run and Manage computation

Antoine Joux HPC in Cryptanalysis



Main steps

Algorithmic starting point
Validation by toy implementation

Find computing power / Choose target computation

Program / Debug / Optimize

Run and Manage computation

Antoine Joux HPC in Cryptanalysis



Main steps

Algorithmic starting point
Validation by toy implementation

Find computing power / Choose target computation

Program / Debug / Optimize

Run and Manage computation

Antoine Joux HPC in Cryptanalysis



Main steps

Algorithmic starting point
Validation by toy implementation

Find computing power / Choose target computation

Program / Debug / Optimize

Run and Manage computation

Antoine Joux HPC in Cryptanalysis



Starting points : personal sample

Lattice reduction and applications

Collisions and multicollisions

Elliptic curves, pairings, volcanoes

Index Calculus

Decomposition algorithms (Knapsacks, codes)

Gröbner bases

Antoine Joux HPC in Cryptanalysis



Starting points : personal sample

Lattice reduction and applications

Collisions and multicollisions

Elliptic curves, pairings, volcanoes

Index Calculus

Decomposition algorithms (Knapsacks, codes)

Gröbner bases

Antoine Joux HPC in Cryptanalysis



Starting points : personal sample

Lattice reduction and applications

Collisions and multicollisions

Elliptic curves, pairings, volcanoes

Index Calculus

Decomposition algorithms (Knapsacks, codes)

Gröbner bases

Antoine Joux HPC in Cryptanalysis



Starting points : personal sample

Lattice reduction and applications

Collisions and multicollisions

Elliptic curves, pairings, volcanoes

Index Calculus

Decomposition algorithms (Knapsacks, codes)

Gröbner bases

Antoine Joux HPC in Cryptanalysis



Starting points : personal sample

Lattice reduction and applications

Collisions and multicollisions

Elliptic curves, pairings, volcanoes

Index Calculus

Decomposition algorithms (Knapsacks, codes)

Gröbner bases

Antoine Joux HPC in Cryptanalysis



Starting points : personal sample

Lattice reduction and applications

Collisions and multicollisions

Elliptic curves, pairings, volcanoes

Index Calculus

Decomposition algorithms (Knapsacks, codes)

Gröbner bases

Antoine Joux HPC in Cryptanalysis



Starting points : personal sample

Lattice reduction and applications

Collisions and multicollisions

Elliptic curves, pairings, volcanoes

Index Calculus

Decomposition algorithms (Knapsacks, codes)

Gröbner bases

Antoine Joux HPC in Cryptanalysis



Stopping at toy implementations

Pairings
Comparing the MOV and FR Reductions in E. C. Crypto
Harasama, Shikata, Suzuki, Imai
⇒ Faster implementation using Miller’s technique
Can be used constructively: Tripartite Diffie-Hellman

Volcanoes
Pairing the volcano, Ionica, J.

Antoine Joux HPC in Cryptanalysis



Stopping at toy implementations

Pairings
Comparing the MOV and FR Reductions in E. C. Crypto
Harasama, Shikata, Suzuki, Imai
⇒ Faster implementation using Miller’s technique
Can be used constructively: Tripartite Diffie-Hellman

Volcanoes
Pairing the volcano, Ionica, J.

Antoine Joux HPC in Cryptanalysis



Stopping at toy implementations

Pairings
Comparing the MOV and FR Reductions in E. C. Crypto
Harasama, Shikata, Suzuki, Imai
⇒ Faster implementation using Miller’s technique
Can be used constructively: Tripartite Diffie-Hellman

Volcanoes
Pairing the volcano, Ionica, J.

Antoine Joux HPC in Cryptanalysis



Finding computing power

Old-fashioned technique: Use/buy dedicated local
machines

Easy to arrange (assuming funding available)
Good control of the architecture choice
Control on the availability of the computing resources
Not easy to scale

Email computations: Use idle cycles on desktop
Total available power is potentially huge
No control on choice of architecture or availability
Very limited communication bandwidth
Need to deal with “adversary” ressources
Need for a very user-friendly client

Antoine Joux HPC in Cryptanalysis



Finding computing power

Old-fashioned technique: Use/buy dedicated local
machines

Easy to arrange (assuming funding available)
Good control of the architecture choice
Control on the availability of the computing resources
Not easy to scale

Email computations: Use idle cycles on desktop
Total available power is potentially huge
No control on choice of architecture or availability
Very limited communication bandwidth
Need to deal with “adversary” ressources
Need for a very user-friendly client

Antoine Joux HPC in Cryptanalysis



Finding computing power

Old-fashioned technique: Use/buy dedicated local
machines

Easy to arrange (assuming funding available)
Good control of the architecture choice
Control on the availability of the computing resources
Not easy to scale

Email computations: Use idle cycles on desktop
Total available power is potentially huge
No control on choice of architecture or availability
Very limited communication bandwidth
Need to deal with “adversary” ressources
Need for a very user-friendly client

Antoine Joux HPC in Cryptanalysis



Finding computing power

Apply for power on HPC ressources
Very high-end dedicated computers
Fast communication
Need to use the existing architecture
Job management in a multi-user context is hard
Challenge: adapt to the massively parallel environment

HPC in the Cloud

Antoine Joux HPC in Cryptanalysis



Finding computing power

Apply for power on HPC ressources
Very high-end dedicated computers
Fast communication
Need to use the existing architecture
Job management in a multi-user context is hard
Challenge: adapt to the massively parallel environment

HPC in the Cloud

Antoine Joux HPC in Cryptanalysis



Finding computing power

Apply for power on HPC ressources
Very high-end dedicated computers
Fast communication
Need to use the existing architecture
Job management in a multi-user context is hard
Challenge: adapt to the massively parallel environment

HPC in the Cloud

Antoine Joux HPC in Cryptanalysis



Choosing a target

Quality of target:
Proof of concept only
Real size demo
Attack cryptographic size parameters or record

Reasonable feasability assurance

Antoine Joux HPC in Cryptanalysis



Choosing a target

Quality of target:
Proof of concept only
Real size demo
Attack cryptographic size parameters or record

Reasonable feasability assurance

Antoine Joux HPC in Cryptanalysis



Choosing a target

Quality of target:
Proof of concept only
Real size demo
Attack cryptographic size parameters or record

Reasonable feasability assurance

Antoine Joux HPC in Cryptanalysis



Proof of concept case

Differential collisions in SHA-0, Chabaud, J.
Full collision out of reach: Demo collisions

80-rounds on partially linearized functions
35-rounds on SHA-0

New generic algorithms for hard knapsacks.
Howgrave-Graham, J.
Improved generic algorithms for hard knapsacks.
Becker, Coron, J.

Decoding random binary linear codes in 2n/20.
Becker, J., May, Meurer

Antoine Joux HPC in Cryptanalysis



Proof of concept case

Differential collisions in SHA-0, Chabaud, J.
Full collision out of reach: Demo collisions

80-rounds on partially linearized functions
35-rounds on SHA-0

New generic algorithms for hard knapsacks.
Howgrave-Graham, J.
Improved generic algorithms for hard knapsacks.
Becker, Coron, J.

Decoding random binary linear codes in 2n/20.
Becker, J., May, Meurer

Antoine Joux HPC in Cryptanalysis



Proof of concept case

Differential collisions in SHA-0, Chabaud, J.
Full collision out of reach: Demo collisions

80-rounds on partially linearized functions
35-rounds on SHA-0

New generic algorithms for hard knapsacks.
Howgrave-Graham, J.
Improved generic algorithms for hard knapsacks.
Becker, Coron, J.

Decoding random binary linear codes in 2n/20.
Becker, J., May, Meurer

Antoine Joux HPC in Cryptanalysis



Proof of concept case

Differential collisions in SHA-0, Chabaud, J.
Full collision out of reach: Demo collisions

80-rounds on partially linearized functions
35-rounds on SHA-0

New generic algorithms for hard knapsacks.
Howgrave-Graham, J.
Improved generic algorithms for hard knapsacks.
Becker, Coron, J.

Decoding random binary linear codes in 2n/20.
Becker, J., May, Meurer

Antoine Joux HPC in Cryptanalysis



Medium case

A practical attack against knapsack based hash functions
Granboulan, J. (1994)
14 h single CPU, 25% success rate
Cryptanalysis of PKP: A new approach Jaulmes, J. (2001)
Full run 125 CPU.years (partially done)
Reduced memory
Fast correlation attacks: an algorithmic point of view,
Chose, J., Mitton (2002)
Reduced memory, demo on 40 bits LFSR, a few CPU days
Elliptic curve discrete logarithm problem over small degree
extension fields J., Vitse (JoC 2011)
Adapted version of GB computations

Antoine Joux HPC in Cryptanalysis



Medium case

A practical attack against knapsack based hash functions
Granboulan, J. (1994)
14 h single CPU, 25% success rate

Cryptanalysis of PKP: A new approach Jaulmes, J. (2001)
Full run 125 CPU.years (partially done)
Reduced memory
Fast correlation attacks: an algorithmic point of view,
Chose, J., Mitton (2002)
Reduced memory, demo on 40 bits LFSR, a few CPU days
Elliptic curve discrete logarithm problem over small degree
extension fields J., Vitse (JoC 2011)
Adapted version of GB computations

Antoine Joux HPC in Cryptanalysis



Medium case

A practical attack against knapsack based hash functions
Granboulan, J. (1994)
14 h single CPU, 25% success rate
Cryptanalysis of PKP: A new approach Jaulmes, J. (2001)
Full run 125 CPU.years (partially done)
Reduced memory

Fast correlation attacks: an algorithmic point of view,
Chose, J., Mitton (2002)
Reduced memory, demo on 40 bits LFSR, a few CPU days
Elliptic curve discrete logarithm problem over small degree
extension fields J., Vitse (JoC 2011)
Adapted version of GB computations

Antoine Joux HPC in Cryptanalysis



Medium case

A practical attack against knapsack based hash functions
Granboulan, J. (1994)
14 h single CPU, 25% success rate
Cryptanalysis of PKP: A new approach Jaulmes, J. (2001)
Full run 125 CPU.years (partially done)
Reduced memory
Fast correlation attacks: an algorithmic point of view,
Chose, J., Mitton (2002)
Reduced memory, demo on 40 bits LFSR, a few CPU days

Elliptic curve discrete logarithm problem over small degree
extension fields J., Vitse (JoC 2011)
Adapted version of GB computations

Antoine Joux HPC in Cryptanalysis



Medium case

A practical attack against knapsack based hash functions
Granboulan, J. (1994)
14 h single CPU, 25% success rate
Cryptanalysis of PKP: A new approach Jaulmes, J. (2001)
Full run 125 CPU.years (partially done)
Reduced memory
Fast correlation attacks: an algorithmic point of view,
Chose, J., Mitton (2002)
Reduced memory, demo on 40 bits LFSR, a few CPU days
Elliptic curve discrete logarithm problem over small degree
extension fields J., Vitse (JoC 2011)
Adapted version of GB computations

Antoine Joux HPC in Cryptanalysis



The coding phase for records
(personal view)

Keep it simple, stupid

Avoid fancy languages, remain at low-level
Avoid Libraries
Avoid creeping featurism
Don’t care too much about portability/reusability
Changes/Adaptations should be simple

Optimization
Don’t optimize non-critical parts
Don’t over-optimize

Main rule: avoid nasty surprises
Program from scratch
Conservative and defensive programming

Antoine Joux HPC in Cryptanalysis



The coding phase for records
(personal view)

Keep it simple, stupid
Avoid fancy languages, remain at low-level

Avoid Libraries
Avoid creeping featurism
Don’t care too much about portability/reusability
Changes/Adaptations should be simple

Optimization
Don’t optimize non-critical parts
Don’t over-optimize

Main rule: avoid nasty surprises
Program from scratch
Conservative and defensive programming

Antoine Joux HPC in Cryptanalysis



The coding phase for records
(personal view)

Keep it simple, stupid
Avoid fancy languages, remain at low-level
Avoid Libraries

Avoid creeping featurism
Don’t care too much about portability/reusability
Changes/Adaptations should be simple

Optimization
Don’t optimize non-critical parts
Don’t over-optimize

Main rule: avoid nasty surprises
Program from scratch
Conservative and defensive programming

Antoine Joux HPC in Cryptanalysis



The coding phase for records
(personal view)

Keep it simple, stupid
Avoid fancy languages, remain at low-level
Avoid Libraries
Avoid creeping featurism

Don’t care too much about portability/reusability
Changes/Adaptations should be simple

Optimization
Don’t optimize non-critical parts
Don’t over-optimize

Main rule: avoid nasty surprises
Program from scratch
Conservative and defensive programming

Antoine Joux HPC in Cryptanalysis



The coding phase for records
(personal view)

Keep it simple, stupid
Avoid fancy languages, remain at low-level
Avoid Libraries
Avoid creeping featurism
Don’t care too much about portability/reusability

Changes/Adaptations should be simple
Optimization

Don’t optimize non-critical parts
Don’t over-optimize

Main rule: avoid nasty surprises
Program from scratch
Conservative and defensive programming

Antoine Joux HPC in Cryptanalysis



The coding phase for records
(personal view)

Keep it simple, stupid
Avoid fancy languages, remain at low-level
Avoid Libraries
Avoid creeping featurism
Don’t care too much about portability/reusability
Changes/Adaptations should be simple

Optimization
Don’t optimize non-critical parts
Don’t over-optimize

Main rule: avoid nasty surprises
Program from scratch
Conservative and defensive programming

Antoine Joux HPC in Cryptanalysis



The coding phase for records
(personal view)

Keep it simple, stupid
Avoid fancy languages, remain at low-level
Avoid Libraries
Avoid creeping featurism
Don’t care too much about portability/reusability
Changes/Adaptations should be simple

Optimization
Don’t optimize non-critical parts
Don’t over-optimize

Main rule: avoid nasty surprises
Program from scratch
Conservative and defensive programming

Antoine Joux HPC in Cryptanalysis



The coding phase for records
(personal view)

Keep it simple, stupid
Avoid fancy languages, remain at low-level
Avoid Libraries
Avoid creeping featurism
Don’t care too much about portability/reusability
Changes/Adaptations should be simple

Optimization
Don’t optimize non-critical parts
Don’t over-optimize

Main rule: avoid nasty surprises
Program from scratch
Conservative and defensive programming

Antoine Joux HPC in Cryptanalysis



Running the computation

Tedious and difficult step
Scale up slowly to the intended size
Expect problems, software can fail

Easy phases don’t scale well: Need to reprogram them on
the fly
Rare bugs can be hard to detect: Check intermediate data

Expect problems, hardware can fail
Power down risk: Need ability to restart computation
Availability problems: Avoid tight schedule
Hardware faults can damage computations
Check intermediate data

Antoine Joux HPC in Cryptanalysis



Running the computation

Tedious and difficult step

Scale up slowly to the intended size
Expect problems, software can fail

Easy phases don’t scale well: Need to reprogram them on
the fly
Rare bugs can be hard to detect: Check intermediate data

Expect problems, hardware can fail
Power down risk: Need ability to restart computation
Availability problems: Avoid tight schedule
Hardware faults can damage computations
Check intermediate data

Antoine Joux HPC in Cryptanalysis



Running the computation

Tedious and difficult step
Scale up slowly to the intended size

Expect problems, software can fail
Easy phases don’t scale well: Need to reprogram them on
the fly
Rare bugs can be hard to detect: Check intermediate data

Expect problems, hardware can fail
Power down risk: Need ability to restart computation
Availability problems: Avoid tight schedule
Hardware faults can damage computations
Check intermediate data

Antoine Joux HPC in Cryptanalysis



Running the computation

Tedious and difficult step
Scale up slowly to the intended size
Expect problems, software can fail

Easy phases don’t scale well: Need to reprogram them on
the fly
Rare bugs can be hard to detect: Check intermediate data

Expect problems, hardware can fail
Power down risk: Need ability to restart computation
Availability problems: Avoid tight schedule
Hardware faults can damage computations
Check intermediate data

Antoine Joux HPC in Cryptanalysis



Running the computation

Tedious and difficult step
Scale up slowly to the intended size
Expect problems, software can fail

Easy phases don’t scale well: Need to reprogram them on
the fly
Rare bugs can be hard to detect: Check intermediate data

Expect problems, hardware can fail
Power down risk: Need ability to restart computation
Availability problems: Avoid tight schedule
Hardware faults can damage computations
Check intermediate data

Antoine Joux HPC in Cryptanalysis



Size of computations — Some reference points

DLOG GF(p) 160-digits (Kleinjung 2007): 3.5 + 14
CPU.years
RSA-768 (Kleinjung et al. 2009): 1500 + 155 CPU.years
RSA-200 (Bahr, Boem, Franken Kleinjung 2005): 55 + 20
CPU.years
ECC-2K130 (Bernstein et al.): ≈ 16 000 CPU.years
10 trillion digits of π (Yee, Kondo 2011) : 12 cores, 90 days:
3 CPU.years
Largest project in last PRACE call (climate simulation):
16 500 CPU.years

Antoine Joux HPC in Cryptanalysis



Example 1: EC Point counting (1998)

Starting point Lercier PhD (1997)
Classical computation with 2 phases

Phase 1: Compute modular partial information
Phase 2: Paste together using collisions search

Modular data available
Classical match-and-sort required about 1 month
⇒ Power shutdown after 3 weeks !
Back to the drawing board:
⇒ Chinese and Match, 4 CPUs during a single night
“Chinese & Match”, an alternative to Atkin’s “Match and
Sort” method used in the SEA algorithm, Lercier, J. (1999)
Main gain: Reduced memory cost

Antoine Joux HPC in Cryptanalysis



Example 1: EC Point counting (1998)

Starting point Lercier PhD (1997)

Classical computation with 2 phases
Phase 1: Compute modular partial information
Phase 2: Paste together using collisions search

Modular data available
Classical match-and-sort required about 1 month
⇒ Power shutdown after 3 weeks !
Back to the drawing board:
⇒ Chinese and Match, 4 CPUs during a single night
“Chinese & Match”, an alternative to Atkin’s “Match and
Sort” method used in the SEA algorithm, Lercier, J. (1999)
Main gain: Reduced memory cost

Antoine Joux HPC in Cryptanalysis



Example 1: EC Point counting (1998)

Starting point Lercier PhD (1997)
Classical computation with 2 phases

Phase 1: Compute modular partial information
Phase 2: Paste together using collisions search

Modular data available
Classical match-and-sort required about 1 month
⇒ Power shutdown after 3 weeks !
Back to the drawing board:
⇒ Chinese and Match, 4 CPUs during a single night
“Chinese & Match”, an alternative to Atkin’s “Match and
Sort” method used in the SEA algorithm, Lercier, J. (1999)
Main gain: Reduced memory cost

Antoine Joux HPC in Cryptanalysis



Example 1: EC Point counting (1998)

Starting point Lercier PhD (1997)
Classical computation with 2 phases

Phase 1: Compute modular partial information
Phase 2: Paste together using collisions search

Modular data available

Classical match-and-sort required about 1 month
⇒ Power shutdown after 3 weeks !
Back to the drawing board:
⇒ Chinese and Match, 4 CPUs during a single night
“Chinese & Match”, an alternative to Atkin’s “Match and
Sort” method used in the SEA algorithm, Lercier, J. (1999)
Main gain: Reduced memory cost

Antoine Joux HPC in Cryptanalysis



Example 1: EC Point counting (1998)

Starting point Lercier PhD (1997)
Classical computation with 2 phases

Phase 1: Compute modular partial information
Phase 2: Paste together using collisions search

Modular data available
Classical match-and-sort required about 1 month
⇒ Power shutdown after 3 weeks !

Back to the drawing board:
⇒ Chinese and Match, 4 CPUs during a single night
“Chinese & Match”, an alternative to Atkin’s “Match and
Sort” method used in the SEA algorithm, Lercier, J. (1999)
Main gain: Reduced memory cost

Antoine Joux HPC in Cryptanalysis



Example 1: EC Point counting (1998)

Starting point Lercier PhD (1997)
Classical computation with 2 phases

Phase 1: Compute modular partial information
Phase 2: Paste together using collisions search

Modular data available
Classical match-and-sort required about 1 month
⇒ Power shutdown after 3 weeks !
Back to the drawing board:
⇒ Chinese and Match, 4 CPUs during a single night

“Chinese & Match”, an alternative to Atkin’s “Match and
Sort” method used in the SEA algorithm, Lercier, J. (1999)
Main gain: Reduced memory cost

Antoine Joux HPC in Cryptanalysis



Example 1: EC Point counting (1998)

Starting point Lercier PhD (1997)
Classical computation with 2 phases

Phase 1: Compute modular partial information
Phase 2: Paste together using collisions search

Modular data available
Classical match-and-sort required about 1 month
⇒ Power shutdown after 3 weeks !
Back to the drawing board:
⇒ Chinese and Match, 4 CPUs during a single night
“Chinese & Match”, an alternative to Atkin’s “Match and
Sort” method used in the SEA algorithm, Lercier, J. (1999)

Main gain: Reduced memory cost

Antoine Joux HPC in Cryptanalysis



Example 1: EC Point counting (1998)

Starting point Lercier PhD (1997)
Classical computation with 2 phases

Phase 1: Compute modular partial information
Phase 2: Paste together using collisions search

Modular data available
Classical match-and-sort required about 1 month
⇒ Power shutdown after 3 weeks !
Back to the drawing board:
⇒ Chinese and Match, 4 CPUs during a single night
“Chinese & Match”, an alternative to Atkin’s “Match and
Sort” method used in the SEA algorithm, Lercier, J. (1999)
Main gain: Reduced memory cost

Antoine Joux HPC in Cryptanalysis



Example 2: SHA-0 collision (2004)

Improved version of SHA-0 analysis
4 blocks collision
⇒ Four consecutive “brute force” steps
Collision found in 80 000 CPU.hours
About 9 CPU.years (Three weeks real time on 160 CPUs)
Published in Collisions of SHA-0 and Reduced SHA-1,
Biham, Chen, J., Carribault, Lemuet, Jalby (2005)

Antoine Joux HPC in Cryptanalysis



Example 2: SHA-0 collision (2004)

Improved version of SHA-0 analysis

4 blocks collision
⇒ Four consecutive “brute force” steps
Collision found in 80 000 CPU.hours
About 9 CPU.years (Three weeks real time on 160 CPUs)
Published in Collisions of SHA-0 and Reduced SHA-1,
Biham, Chen, J., Carribault, Lemuet, Jalby (2005)

Antoine Joux HPC in Cryptanalysis



Example 2: SHA-0 collision (2004)

Improved version of SHA-0 analysis
4 blocks collision
⇒ Four consecutive “brute force” steps

Collision found in 80 000 CPU.hours
About 9 CPU.years (Three weeks real time on 160 CPUs)
Published in Collisions of SHA-0 and Reduced SHA-1,
Biham, Chen, J., Carribault, Lemuet, Jalby (2005)

Antoine Joux HPC in Cryptanalysis



Example 2: SHA-0 collision (2004)

Improved version of SHA-0 analysis
4 blocks collision
⇒ Four consecutive “brute force” steps
Collision found in 80 000 CPU.hours
About 9 CPU.years (Three weeks real time on 160 CPUs)

Published in Collisions of SHA-0 and Reduced SHA-1,
Biham, Chen, J., Carribault, Lemuet, Jalby (2005)

Antoine Joux HPC in Cryptanalysis



Example 2: SHA-0 collision (2004)

Improved version of SHA-0 analysis
4 blocks collision
⇒ Four consecutive “brute force” steps
Collision found in 80 000 CPU.hours
About 9 CPU.years (Three weeks real time on 160 CPUs)
Published in Collisions of SHA-0 and Reduced SHA-1,
Biham, Chen, J., Carribault, Lemuet, Jalby (2005)

Antoine Joux HPC in Cryptanalysis



Example 3: Triple collisions (2009)
Improved generic algorithms for 3-collisions, Lucks, J.
Asiacrypt 2009

Simple computation with 3 phases
Phase 1: Compute iterations F i(R) from random R
⇒ Stop at distinguished point
Phase 2: Sort by end point values
Phase 3: Restart from triples with same end points and
recompute

Needs raw computing power, low communication/disk
⇒ Phase 1 on CUDA graphics card (≈ 8 times faster than
the CPUs on the available machines)
Phase 2, easy step, on single CPU
Phase 3, less costly than Phase 1, harder to code
Done on CPUs

Triple collision on 64-bits cryptographic function
Magnitude of computation : 100 CPU.days

Antoine Joux HPC in Cryptanalysis



Example 3: Triple collisions (2009)
Improved generic algorithms for 3-collisions, Lucks, J.
Asiacrypt 2009
Simple computation with 3 phases

Phase 1: Compute iterations F i(R) from random R
⇒ Stop at distinguished point
Phase 2: Sort by end point values
Phase 3: Restart from triples with same end points and
recompute

Needs raw computing power, low communication/disk
⇒ Phase 1 on CUDA graphics card (≈ 8 times faster than
the CPUs on the available machines)
Phase 2, easy step, on single CPU
Phase 3, less costly than Phase 1, harder to code
Done on CPUs

Triple collision on 64-bits cryptographic function
Magnitude of computation : 100 CPU.days

Antoine Joux HPC in Cryptanalysis



Example 3: Triple collisions (2009)
Improved generic algorithms for 3-collisions, Lucks, J.
Asiacrypt 2009
Simple computation with 3 phases

Phase 1: Compute iterations F i(R) from random R
⇒ Stop at distinguished point
Phase 2: Sort by end point values
Phase 3: Restart from triples with same end points and
recompute

Needs raw computing power, low communication/disk
⇒ Phase 1 on CUDA graphics card (≈ 8 times faster than
the CPUs on the available machines)

Phase 2, easy step, on single CPU
Phase 3, less costly than Phase 1, harder to code
Done on CPUs

Triple collision on 64-bits cryptographic function
Magnitude of computation : 100 CPU.days

Antoine Joux HPC in Cryptanalysis



Example 3: Triple collisions (2009)
Improved generic algorithms for 3-collisions, Lucks, J.
Asiacrypt 2009
Simple computation with 3 phases

Phase 1: Compute iterations F i(R) from random R
⇒ Stop at distinguished point
Phase 2: Sort by end point values
Phase 3: Restart from triples with same end points and
recompute

Needs raw computing power, low communication/disk
⇒ Phase 1 on CUDA graphics card (≈ 8 times faster than
the CPUs on the available machines)
Phase 2, easy step, on single CPU

Phase 3, less costly than Phase 1, harder to code
Done on CPUs

Triple collision on 64-bits cryptographic function
Magnitude of computation : 100 CPU.days

Antoine Joux HPC in Cryptanalysis



Example 3: Triple collisions (2009)
Improved generic algorithms for 3-collisions, Lucks, J.
Asiacrypt 2009
Simple computation with 3 phases

Phase 1: Compute iterations F i(R) from random R
⇒ Stop at distinguished point
Phase 2: Sort by end point values
Phase 3: Restart from triples with same end points and
recompute

Needs raw computing power, low communication/disk
⇒ Phase 1 on CUDA graphics card (≈ 8 times faster than
the CPUs on the available machines)
Phase 2, easy step, on single CPU
Phase 3, less costly than Phase 1, harder to code
Done on CPUs

Triple collision on 64-bits cryptographic function
Magnitude of computation : 100 CPU.days

Antoine Joux HPC in Cryptanalysis



Example 3: Triple collisions (2009)
Improved generic algorithms for 3-collisions, Lucks, J.
Asiacrypt 2009
Simple computation with 3 phases

Phase 1: Compute iterations F i(R) from random R
⇒ Stop at distinguished point
Phase 2: Sort by end point values
Phase 3: Restart from triples with same end points and
recompute

Needs raw computing power, low communication/disk
⇒ Phase 1 on CUDA graphics card (≈ 8 times faster than
the CPUs on the available machines)
Phase 2, easy step, on single CPU
Phase 3, less costly than Phase 1, harder to code
Done on CPUs

Triple collision on 64-bits cryptographic function
Magnitude of computation : 100 CPU.days

Antoine Joux HPC in Cryptanalysis



Example 4: Index calculus

A known landscape:
Discrete log. in GF(p): 90 digits (1998), 100 digits (1999),
110 digits (2001) , 120 digits (2001), 130 digits (2005)
Discrete log. in GF(2n): 521 bits (2001), 607 bits (Thomé
2002, 2005) , 613 bits (2005)
Discrete log. in GF(pn): 6553725, 120 digits (2005),
37080130, 168 digits (2005)
When e-th roots become easier than Factoring, J.,
Naccache, Thomé 2007
Oracle assisted static DH, J., Lercier, Naccache, Thomé
2008
Oracle assisted static DH on Oakley curve (Granger, J.,
Vitse 2010)

Not a routine task !

Antoine Joux HPC in Cryptanalysis



Example 4: Index calculus

A known landscape:
Discrete log. in GF(p): 90 digits (1998), 100 digits (1999),
110 digits (2001) , 120 digits (2001), 130 digits (2005)
Discrete log. in GF(2n): 521 bits (2001), 607 bits (Thomé
2002, 2005) , 613 bits (2005)
Discrete log. in GF(pn): 6553725, 120 digits (2005),
37080130, 168 digits (2005)
When e-th roots become easier than Factoring, J.,
Naccache, Thomé 2007
Oracle assisted static DH, J., Lercier, Naccache, Thomé
2008
Oracle assisted static DH on Oakley curve (Granger, J.,
Vitse 2010)

Not a routine task !

Antoine Joux HPC in Cryptanalysis



Example 4: Index calculus

A known landscape:
Discrete log. in GF(p): 90 digits (1998), 100 digits (1999),
110 digits (2001) , 120 digits (2001), 130 digits (2005)
Discrete log. in GF(2n): 521 bits (2001), 607 bits (Thomé
2002, 2005) , 613 bits (2005)
Discrete log. in GF(pn): 6553725, 120 digits (2005),
37080130, 168 digits (2005)
When e-th roots become easier than Factoring, J.,
Naccache, Thomé 2007
Oracle assisted static DH, J., Lercier, Naccache, Thomé
2008
Oracle assisted static DH on Oakley curve (Granger, J.,
Vitse 2010)

Not a routine task !

Antoine Joux HPC in Cryptanalysis



Index calculus in finite fields

GF(p) 90 100 110 120 130
CPU.days 150 260 70 280 340
Computers 4× 1 + 1 8× 1 + 1 1× 4 1× 4 1× 16

GF(2n) 521 607 613
CPU.days 120 560 1100
Computers 1× 4 1× 16 4× 16

Other 6553725 37080130 RSA-155 e-th roots
CPU.days 2 0.5 2
Computers 1 1× 16 + 1× 8 20

Antoine Joux HPC in Cryptanalysis



Initial view for EC-DLOG on GF(p6)

Theory:
Phase 1: Sieving
Phase 2: Linear algebra
Phase 3: Individual logarithms

Practice:
Phase 1:

1a: Sieving
1b: Verification of relations (fast)

Phase 2:
2a: Structured Gaussian Elimination (fast)
2b: Lanczos algorithm
2c: Completing the logarithms (fast)

Phase 2: Linear algebra
Phase 3: Individual logarithms

View confirmed by 6× 22

Antoine Joux HPC in Cryptanalysis



Initial view for EC-DLOG on GF(p6)
Theory:

Phase 1: Sieving
Phase 2: Linear algebra
Phase 3: Individual logarithms

Practice:
Phase 1:

1a: Sieving
1b: Verification of relations (fast)

Phase 2:
2a: Structured Gaussian Elimination (fast)
2b: Lanczos algorithm
2c: Completing the logarithms (fast)

Phase 2: Linear algebra
Phase 3: Individual logarithms

View confirmed by 6× 22

Antoine Joux HPC in Cryptanalysis



Initial view for EC-DLOG on GF(p6)
Theory:

Phase 1: Sieving
Phase 2: Linear algebra
Phase 3: Individual logarithms

Practice:
Phase 1:

1a: Sieving
1b: Verification of relations (fast)

Phase 2:
2a: Structured Gaussian Elimination (fast)
2b: Lanczos algorithm
2c: Completing the logarithms (fast)

Phase 2: Linear algebra
Phase 3: Individual logarithms

View confirmed by 6× 22

Antoine Joux HPC in Cryptanalysis



Initial view for EC-DLOG on GF(p6)
Theory:

Phase 1: Sieving
Phase 2: Linear algebra
Phase 3: Individual logarithms

Practice:
Phase 1:

1a: Sieving
1b: Verification of relations (fast)

Phase 2:
2a: Structured Gaussian Elimination (fast)
2b: Lanczos algorithm
2c: Completing the logarithms (fast)

Phase 2: Linear algebra
Phase 3: Individual logarithms

View confirmed by 6× 22

Antoine Joux HPC in Cryptanalysis



Initial view for EC-DLOG on GF(p6)
Theory:

Phase 1: Sieving
Phase 2: Linear algebra
Phase 3: Individual logarithms

Practice:
Phase 1:

1a: Sieving
1b: Verification of relations (fast)

Phase 2:
2a: Structured Gaussian Elimination (fast)
2b: Lanczos algorithm
2c: Completing the logarithms (fast)

Phase 2: Linear algebra
Phase 3: Individual logarithms

View confirmed by 6× 22

Antoine Joux HPC in Cryptanalysis



More data for 6× 22

Computation performed on GENCI’s Titane computer
(Project t2010066445)

Sieving: About 1 hour on 200 CPUs
SGE: from 50 M eq. in 2.1 M var.
⇒ 666 K eq./var.
Lanczos 27 hours on 128 CPUs
Completion, 10 min single CPU
Individual logarithms, a few min, single CPU

Total 152 CPU.days

Antoine Joux HPC in Cryptanalysis



More data for 6× 22

Computation performed on GENCI’s Titane computer
(Project t2010066445)

Sieving: About 1 hour on 200 CPUs

SGE: from 50 M eq. in 2.1 M var.
⇒ 666 K eq./var.
Lanczos 27 hours on 128 CPUs
Completion, 10 min single CPU
Individual logarithms, a few min, single CPU

Total 152 CPU.days

Antoine Joux HPC in Cryptanalysis



More data for 6× 22

Computation performed on GENCI’s Titane computer
(Project t2010066445)

Sieving: About 1 hour on 200 CPUs
SGE: from 50 M eq. in 2.1 M var.
⇒ 666 K eq./var.

Lanczos 27 hours on 128 CPUs
Completion, 10 min single CPU
Individual logarithms, a few min, single CPU

Total 152 CPU.days

Antoine Joux HPC in Cryptanalysis



More data for 6× 22

Computation performed on GENCI’s Titane computer
(Project t2010066445)

Sieving: About 1 hour on 200 CPUs
SGE: from 50 M eq. in 2.1 M var.
⇒ 666 K eq./var.
Lanczos 27 hours on 128 CPUs

Completion, 10 min single CPU
Individual logarithms, a few min, single CPU

Total 152 CPU.days

Antoine Joux HPC in Cryptanalysis



More data for 6× 22

Computation performed on GENCI’s Titane computer
(Project t2010066445)

Sieving: About 1 hour on 200 CPUs
SGE: from 50 M eq. in 2.1 M var.
⇒ 666 K eq./var.
Lanczos 27 hours on 128 CPUs
Completion, 10 min single CPU

Individual logarithms, a few min, single CPU

Total 152 CPU.days

Antoine Joux HPC in Cryptanalysis



More data for 6× 22

Computation performed on GENCI’s Titane computer
(Project t2010066445)

Sieving: About 1 hour on 200 CPUs
SGE: from 50 M eq. in 2.1 M var.
⇒ 666 K eq./var.
Lanczos 27 hours on 128 CPUs
Completion, 10 min single CPU
Individual logarithms, a few min, single CPU

Total 152 CPU.days

Antoine Joux HPC in Cryptanalysis



More data for 6× 22

Computation performed on GENCI’s Titane computer
(Project t2010066445)

Sieving: About 1 hour on 200 CPUs
SGE: from 50 M eq. in 2.1 M var.
⇒ 666 K eq./var.
Lanczos 27 hours on 128 CPUs
Completion, 10 min single CPU
Individual logarithms, a few min, single CPU

Total 152 CPU.days

Antoine Joux HPC in Cryptanalysis



Going to 6× 23 and 6× 24

2a: Structured Gaussian Elimination
6× 24: Not enough memory. Need to work on disk
6× 25: Too slow. Need to multi-thread
Corruption of equations on disk:
⇒ Add a verification of relations

2b: Lanczos: Getting slow
Time limit on jobs: need to save/restart
Need to supervise the process

Antoine Joux HPC in Cryptanalysis



Going to 6× 23 and 6× 24

2a: Structured Gaussian Elimination
6× 24: Not enough memory. Need to work on disk
6× 25: Too slow. Need to multi-thread
Corruption of equations on disk:
⇒ Add a verification of relations

2b: Lanczos: Getting slow
Time limit on jobs: need to save/restart
Need to supervise the process

Antoine Joux HPC in Cryptanalysis



Going to 6× 23 and 6× 24

2a: Structured Gaussian Elimination
6× 24: Not enough memory. Need to work on disk
6× 25: Too slow. Need to multi-thread
Corruption of equations on disk:
⇒ Add a verification of relations

2b: Lanczos: Getting slow
Time limit on jobs: need to save/restart
Need to supervise the process

Antoine Joux HPC in Cryptanalysis



More data for 6× 23
Computation performed on GENCI’s Curie 1

(PRACE Projects 2010PA0421 and 2011RA0387)

Sieving: About 3.5 hour on 1024 CPUs
SGE: Not enough memory
⇒ Rewrite to work on disk. Becomes too slow: need to
multi-thread
New SGE: from 870 Meq. in 4.2 M var.
⇒ 1 M. eq./var. Using a few hours on 32 CPUs.
Corruption of some equations on disk:
⇒ Add a verification of relations
Lanczos 73 hours on 64 CPUs
Completion, 17.5 hours single CPU
Individual logarithms, a few min, single CPU

Total 350 CPU.days

1Same computer used for all subsequent computations
Antoine Joux HPC in Cryptanalysis



More data for 6× 23
Computation performed on GENCI’s Curie 1

(PRACE Projects 2010PA0421 and 2011RA0387)

Sieving: About 3.5 hour on 1024 CPUs

SGE: Not enough memory
⇒ Rewrite to work on disk. Becomes too slow: need to
multi-thread
New SGE: from 870 Meq. in 4.2 M var.
⇒ 1 M. eq./var. Using a few hours on 32 CPUs.
Corruption of some equations on disk:
⇒ Add a verification of relations
Lanczos 73 hours on 64 CPUs
Completion, 17.5 hours single CPU
Individual logarithms, a few min, single CPU

Total 350 CPU.days

1Same computer used for all subsequent computations
Antoine Joux HPC in Cryptanalysis



More data for 6× 23
Computation performed on GENCI’s Curie 1

(PRACE Projects 2010PA0421 and 2011RA0387)

Sieving: About 3.5 hour on 1024 CPUs
SGE: Not enough memory
⇒ Rewrite to work on disk. Becomes too slow: need to
multi-thread

New SGE: from 870 Meq. in 4.2 M var.
⇒ 1 M. eq./var. Using a few hours on 32 CPUs.
Corruption of some equations on disk:
⇒ Add a verification of relations
Lanczos 73 hours on 64 CPUs
Completion, 17.5 hours single CPU
Individual logarithms, a few min, single CPU

Total 350 CPU.days

1Same computer used for all subsequent computations
Antoine Joux HPC in Cryptanalysis



More data for 6× 23
Computation performed on GENCI’s Curie 1

(PRACE Projects 2010PA0421 and 2011RA0387)

Sieving: About 3.5 hour on 1024 CPUs
SGE: Not enough memory
⇒ Rewrite to work on disk. Becomes too slow: need to
multi-thread
New SGE: from 870 Meq. in 4.2 M var.
⇒ 1 M. eq./var. Using a few hours on 32 CPUs.

Corruption of some equations on disk:
⇒ Add a verification of relations
Lanczos 73 hours on 64 CPUs
Completion, 17.5 hours single CPU
Individual logarithms, a few min, single CPU

Total 350 CPU.days

1Same computer used for all subsequent computations
Antoine Joux HPC in Cryptanalysis



More data for 6× 23
Computation performed on GENCI’s Curie 1

(PRACE Projects 2010PA0421 and 2011RA0387)

Sieving: About 3.5 hour on 1024 CPUs
SGE: Not enough memory
⇒ Rewrite to work on disk. Becomes too slow: need to
multi-thread
New SGE: from 870 Meq. in 4.2 M var.
⇒ 1 M. eq./var. Using a few hours on 32 CPUs.
Corruption of some equations on disk:
⇒ Add a verification of relations

Lanczos 73 hours on 64 CPUs
Completion, 17.5 hours single CPU
Individual logarithms, a few min, single CPU

Total 350 CPU.days

1Same computer used for all subsequent computations
Antoine Joux HPC in Cryptanalysis



More data for 6× 23
Computation performed on GENCI’s Curie 1

(PRACE Projects 2010PA0421 and 2011RA0387)

Sieving: About 3.5 hour on 1024 CPUs
SGE: Not enough memory
⇒ Rewrite to work on disk. Becomes too slow: need to
multi-thread
New SGE: from 870 Meq. in 4.2 M var.
⇒ 1 M. eq./var. Using a few hours on 32 CPUs.
Corruption of some equations on disk:
⇒ Add a verification of relations
Lanczos 73 hours on 64 CPUs

Completion, 17.5 hours single CPU
Individual logarithms, a few min, single CPU

Total 350 CPU.days

1Same computer used for all subsequent computations
Antoine Joux HPC in Cryptanalysis



More data for 6× 23
Computation performed on GENCI’s Curie 1

(PRACE Projects 2010PA0421 and 2011RA0387)

Sieving: About 3.5 hour on 1024 CPUs
SGE: Not enough memory
⇒ Rewrite to work on disk. Becomes too slow: need to
multi-thread
New SGE: from 870 Meq. in 4.2 M var.
⇒ 1 M. eq./var. Using a few hours on 32 CPUs.
Corruption of some equations on disk:
⇒ Add a verification of relations
Lanczos 73 hours on 64 CPUs
Completion, 17.5 hours single CPU

Individual logarithms, a few min, single CPU

Total 350 CPU.days

1Same computer used for all subsequent computations
Antoine Joux HPC in Cryptanalysis



More data for 6× 23
Computation performed on GENCI’s Curie 1

(PRACE Projects 2010PA0421 and 2011RA0387)

Sieving: About 3.5 hour on 1024 CPUs
SGE: Not enough memory
⇒ Rewrite to work on disk. Becomes too slow: need to
multi-thread
New SGE: from 870 Meq. in 4.2 M var.
⇒ 1 M. eq./var. Using a few hours on 32 CPUs.
Corruption of some equations on disk:
⇒ Add a verification of relations
Lanczos 73 hours on 64 CPUs
Completion, 17.5 hours single CPU
Individual logarithms, a few min, single CPU

Total 350 CPU.days

1Same computer used for all subsequent computations
Antoine Joux HPC in Cryptanalysis



More data for 6× 23
Computation performed on GENCI’s Curie 1

(PRACE Projects 2010PA0421 and 2011RA0387)

Sieving: About 3.5 hour on 1024 CPUs
SGE: Not enough memory
⇒ Rewrite to work on disk. Becomes too slow: need to
multi-thread
New SGE: from 870 Meq. in 4.2 M var.
⇒ 1 M. eq./var. Using a few hours on 32 CPUs.
Corruption of some equations on disk:
⇒ Add a verification of relations
Lanczos 73 hours on 64 CPUs
Completion, 17.5 hours single CPU
Individual logarithms, a few min, single CPU

Total 350 CPU.days
1Same computer used for all subsequent computations

Antoine Joux HPC in Cryptanalysis



More data for 6× 24

Sieving: About 15 hours on 1024 CPUs
New SGE: from 3.5 Geq. in 8.4 M var.
⇒ 1.7 M. eq./var. Using a few hours on 32 CPUs.
Corruption of some equations on disk:
⇒ Add a verification of relations
Lanczos 11 days on 64 CPUs
Completion, 13 hours single CPU
Individual logarithms, a few min, single CPU

Total 1350 CPU.days ≈ 3.7 CPU.years

Antoine Joux HPC in Cryptanalysis



More data for 6× 24

Sieving: About 15 hours on 1024 CPUs

New SGE: from 3.5 Geq. in 8.4 M var.
⇒ 1.7 M. eq./var. Using a few hours on 32 CPUs.
Corruption of some equations on disk:
⇒ Add a verification of relations
Lanczos 11 days on 64 CPUs
Completion, 13 hours single CPU
Individual logarithms, a few min, single CPU

Total 1350 CPU.days ≈ 3.7 CPU.years

Antoine Joux HPC in Cryptanalysis



More data for 6× 24

Sieving: About 15 hours on 1024 CPUs
New SGE: from 3.5 Geq. in 8.4 M var.
⇒ 1.7 M. eq./var. Using a few hours on 32 CPUs.

Corruption of some equations on disk:
⇒ Add a verification of relations
Lanczos 11 days on 64 CPUs
Completion, 13 hours single CPU
Individual logarithms, a few min, single CPU

Total 1350 CPU.days ≈ 3.7 CPU.years

Antoine Joux HPC in Cryptanalysis



More data for 6× 24

Sieving: About 15 hours on 1024 CPUs
New SGE: from 3.5 Geq. in 8.4 M var.
⇒ 1.7 M. eq./var. Using a few hours on 32 CPUs.
Corruption of some equations on disk:
⇒ Add a verification of relations

Lanczos 11 days on 64 CPUs
Completion, 13 hours single CPU
Individual logarithms, a few min, single CPU

Total 1350 CPU.days ≈ 3.7 CPU.years

Antoine Joux HPC in Cryptanalysis



More data for 6× 24

Sieving: About 15 hours on 1024 CPUs
New SGE: from 3.5 Geq. in 8.4 M var.
⇒ 1.7 M. eq./var. Using a few hours on 32 CPUs.
Corruption of some equations on disk:
⇒ Add a verification of relations
Lanczos 11 days on 64 CPUs

Completion, 13 hours single CPU
Individual logarithms, a few min, single CPU

Total 1350 CPU.days ≈ 3.7 CPU.years

Antoine Joux HPC in Cryptanalysis



More data for 6× 24

Sieving: About 15 hours on 1024 CPUs
New SGE: from 3.5 Geq. in 8.4 M var.
⇒ 1.7 M. eq./var. Using a few hours on 32 CPUs.
Corruption of some equations on disk:
⇒ Add a verification of relations
Lanczos 11 days on 64 CPUs
Completion, 13 hours single CPU

Individual logarithms, a few min, single CPU

Total 1350 CPU.days ≈ 3.7 CPU.years

Antoine Joux HPC in Cryptanalysis



More data for 6× 24

Sieving: About 15 hours on 1024 CPUs
New SGE: from 3.5 Geq. in 8.4 M var.
⇒ 1.7 M. eq./var. Using a few hours on 32 CPUs.
Corruption of some equations on disk:
⇒ Add a verification of relations
Lanczos 11 days on 64 CPUs
Completion, 13 hours single CPU
Individual logarithms, a few min, single CPU

Total 1350 CPU.days ≈ 3.7 CPU.years

Antoine Joux HPC in Cryptanalysis



More data for 6× 24

Sieving: About 15 hours on 1024 CPUs
New SGE: from 3.5 Geq. in 8.4 M var.
⇒ 1.7 M. eq./var. Using a few hours on 32 CPUs.
Corruption of some equations on disk:
⇒ Add a verification of relations
Lanczos 11 days on 64 CPUs
Completion, 13 hours single CPU
Individual logarithms, a few min, single CPU

Total 1350 CPU.days ≈ 3.7 CPU.years

Antoine Joux HPC in Cryptanalysis



Going to 6× 25

Lanczos: Getting slow
Time limit on jobs: need to automate save/restart
Need to supervise the process

Completion of logarithms
Related to SGE: Becoming harder
Occasional corruption of logarithms on disk !
⇒ Add a correction step to remove false logs

Antoine Joux HPC in Cryptanalysis



Going to 6× 25

Lanczos: Getting slow
Time limit on jobs: need to automate save/restart
Need to supervise the process

Completion of logarithms
Related to SGE: Becoming harder
Occasional corruption of logarithms on disk !
⇒ Add a correction step to remove false logs

Antoine Joux HPC in Cryptanalysis



Going to 6× 25

Lanczos: Getting slow
Time limit on jobs: need to automate save/restart
Need to supervise the process

Completion of logarithms
Related to SGE: Becoming harder
Occasional corruption of logarithms on disk !
⇒ Add a correction step to remove false logs

Antoine Joux HPC in Cryptanalysis



More data for 6× 25

Sieving: About 62 hours on 1024 CPUs
New SGE: from 14 Geq. in 16.8 M var.
⇒ 3.1 M. eq. Using a few runs on 32 CPUs. Total 25.5h on
32 CPUs.
Lanczos 28.5 days on 64 CPUs
Completion becoming too slow: multi-threaded version
⇒ 12 hours on 32 CPUs
Individual logarithms, improved code: 1 min, single CPU

Total 4470 CPU.days ≈ 12 CPU.years

Antoine Joux HPC in Cryptanalysis



More data for 6× 25

Sieving: About 62 hours on 1024 CPUs

New SGE: from 14 Geq. in 16.8 M var.
⇒ 3.1 M. eq. Using a few runs on 32 CPUs. Total 25.5h on
32 CPUs.
Lanczos 28.5 days on 64 CPUs
Completion becoming too slow: multi-threaded version
⇒ 12 hours on 32 CPUs
Individual logarithms, improved code: 1 min, single CPU

Total 4470 CPU.days ≈ 12 CPU.years

Antoine Joux HPC in Cryptanalysis



More data for 6× 25

Sieving: About 62 hours on 1024 CPUs
New SGE: from 14 Geq. in 16.8 M var.
⇒ 3.1 M. eq. Using a few runs on 32 CPUs. Total 25.5h on
32 CPUs.

Lanczos 28.5 days on 64 CPUs
Completion becoming too slow: multi-threaded version
⇒ 12 hours on 32 CPUs
Individual logarithms, improved code: 1 min, single CPU

Total 4470 CPU.days ≈ 12 CPU.years

Antoine Joux HPC in Cryptanalysis



More data for 6× 25

Sieving: About 62 hours on 1024 CPUs
New SGE: from 14 Geq. in 16.8 M var.
⇒ 3.1 M. eq. Using a few runs on 32 CPUs. Total 25.5h on
32 CPUs.
Lanczos 28.5 days on 64 CPUs

Completion becoming too slow: multi-threaded version
⇒ 12 hours on 32 CPUs
Individual logarithms, improved code: 1 min, single CPU

Total 4470 CPU.days ≈ 12 CPU.years

Antoine Joux HPC in Cryptanalysis



More data for 6× 25

Sieving: About 62 hours on 1024 CPUs
New SGE: from 14 Geq. in 16.8 M var.
⇒ 3.1 M. eq. Using a few runs on 32 CPUs. Total 25.5h on
32 CPUs.
Lanczos 28.5 days on 64 CPUs
Completion becoming too slow: multi-threaded version
⇒ 12 hours on 32 CPUs

Individual logarithms, improved code: 1 min, single CPU

Total 4470 CPU.days ≈ 12 CPU.years

Antoine Joux HPC in Cryptanalysis



More data for 6× 25

Sieving: About 62 hours on 1024 CPUs
New SGE: from 14 Geq. in 16.8 M var.
⇒ 3.1 M. eq. Using a few runs on 32 CPUs. Total 25.5h on
32 CPUs.
Lanczos 28.5 days on 64 CPUs
Completion becoming too slow: multi-threaded version
⇒ 12 hours on 32 CPUs
Individual logarithms, improved code: 1 min, single CPU

Total 4470 CPU.days ≈ 12 CPU.years

Antoine Joux HPC in Cryptanalysis



More data for 6× 25

Sieving: About 62 hours on 1024 CPUs
New SGE: from 14 Geq. in 16.8 M var.
⇒ 3.1 M. eq. Using a few runs on 32 CPUs. Total 25.5h on
32 CPUs.
Lanczos 28.5 days on 64 CPUs
Completion becoming too slow: multi-threaded version
⇒ 12 hours on 32 CPUs
Individual logarithms, improved code: 1 min, single CPU

Total 4470 CPU.days ≈ 12 CPU.years

Antoine Joux HPC in Cryptanalysis



EC-DLOG on GF(p6): toward 6× 26

Theory:
Phase 1: Sieving
Phase 2: Linear algebra
Phase 3: Individual logarithms

Practice:
Phase 1:

1a: Sieving
1b: Verification of relations (fast)

Phase 2:
2a: Structured Gaussian Elimination
2b: Verification of relations
2c: Lanczos algorithm (About 4 months expected)
2d: Completing/Correcting the logarithms

Phase 3: Individual logarithms (fast)

New view confirmed by 6× 25

Antoine Joux HPC in Cryptanalysis



EC-DLOG on GF(p6): toward 6× 26
Theory:

Phase 1: Sieving
Phase 2: Linear algebra
Phase 3: Individual logarithms

Practice:
Phase 1:

1a: Sieving
1b: Verification of relations (fast)

Phase 2:
2a: Structured Gaussian Elimination
2b: Verification of relations
2c: Lanczos algorithm (About 4 months expected)
2d: Completing/Correcting the logarithms

Phase 3: Individual logarithms (fast)

New view confirmed by 6× 25

Antoine Joux HPC in Cryptanalysis



EC-DLOG on GF(p6): toward 6× 26
Theory:

Phase 1: Sieving
Phase 2: Linear algebra
Phase 3: Individual logarithms

Practice:
Phase 1:

1a: Sieving
1b: Verification of relations (fast)

Phase 2:
2a: Structured Gaussian Elimination
2b: Verification of relations
2c: Lanczos algorithm (About 4 months expected)
2d: Completing/Correcting the logarithms

Phase 3: Individual logarithms (fast)

New view confirmed by 6× 25

Antoine Joux HPC in Cryptanalysis



EC-DLOG on GF(p6): toward 6× 26
Theory:

Phase 1: Sieving
Phase 2: Linear algebra
Phase 3: Individual logarithms

Practice:
Phase 1:

1a: Sieving
1b: Verification of relations (fast)

Phase 2:
2a: Structured Gaussian Elimination
2b: Verification of relations
2c: Lanczos algorithm (About 4 months expected)
2d: Completing/Correcting the logarithms

Phase 3: Individual logarithms (fast)

New view confirmed by 6× 25

Antoine Joux HPC in Cryptanalysis



EC-DLOG on GF(p6): toward 6× 26
Theory:

Phase 1: Sieving
Phase 2: Linear algebra
Phase 3: Individual logarithms

Practice:
Phase 1:

1a: Sieving
1b: Verification of relations (fast)

Phase 2:
2a: Structured Gaussian Elimination
2b: Verification of relations
2c: Lanczos algorithm (About 4 months expected)
2d: Completing/Correcting the logarithms

Phase 3: Individual logarithms (fast)

New view confirmed by 6× 25

Antoine Joux HPC in Cryptanalysis



Toward 6× 26

Sieving and verification OK
8192 CPUs for 24 hours
SGE OK: From 40 Geq in 33.5 M var
⇒ 5.9 M eq. A few 10h runs on 32 CPUs
Lanczos expected to 4 months on 64 CPUs:

Started on Sept. 22nb.
Slower than expected in real time
Machine busy, need to wait between runs
End expected on Feb. 4th

Orthogonalization did not stop !

Failure: how to proceed ?

Option 1: Add a sanity check and restart
Option 2: Improve Lanczos for more CPUs
Option 3: Back to the drawing board

Antoine Joux HPC in Cryptanalysis



Toward 6× 26

Sieving and verification OK
8192 CPUs for 24 hours
SGE OK: From 40 Geq in 33.5 M var
⇒ 5.9 M eq. A few 10h runs on 32 CPUs
Lanczos expected to 4 months on 64 CPUs:

Started on Sept. 22nb.

Slower than expected in real time
Machine busy, need to wait between runs
End expected on Feb. 4th

Orthogonalization did not stop !

Failure: how to proceed ?

Option 1: Add a sanity check and restart
Option 2: Improve Lanczos for more CPUs
Option 3: Back to the drawing board

Antoine Joux HPC in Cryptanalysis



Toward 6× 26

Sieving and verification OK
8192 CPUs for 24 hours
SGE OK: From 40 Geq in 33.5 M var
⇒ 5.9 M eq. A few 10h runs on 32 CPUs
Lanczos expected to 4 months on 64 CPUs:

Started on Sept. 22nb.
Slower than expected in real time
Machine busy, need to wait between runs

End expected on Feb. 4th

Orthogonalization did not stop !

Failure: how to proceed ?

Option 1: Add a sanity check and restart
Option 2: Improve Lanczos for more CPUs
Option 3: Back to the drawing board

Antoine Joux HPC in Cryptanalysis



Toward 6× 26

Sieving and verification OK
8192 CPUs for 24 hours
SGE OK: From 40 Geq in 33.5 M var
⇒ 5.9 M eq. A few 10h runs on 32 CPUs
Lanczos expected to 4 months on 64 CPUs:

Started on Sept. 22nb.
Slower than expected in real time
Machine busy, need to wait between runs
End expected on Feb. 4th

Orthogonalization did not stop !

Failure: how to proceed ?

Option 1: Add a sanity check and restart
Option 2: Improve Lanczos for more CPUs
Option 3: Back to the drawing board

Antoine Joux HPC in Cryptanalysis



Toward 6× 26

Sieving and verification OK
8192 CPUs for 24 hours
SGE OK: From 40 Geq in 33.5 M var
⇒ 5.9 M eq. A few 10h runs on 32 CPUs
Lanczos expected to 4 months on 64 CPUs:

Started on Sept. 22nb.
Slower than expected in real time
Machine busy, need to wait between runs
End expected on Feb. 4th

Orthogonalization did not stop !

Failure: how to proceed ?

Option 1: Add a sanity check and restart
Option 2: Improve Lanczos for more CPUs
Option 3: Back to the drawing board

Antoine Joux HPC in Cryptanalysis



Toward 6× 26

Sieving and verification OK
8192 CPUs for 24 hours
SGE OK: From 40 Geq in 33.5 M var
⇒ 5.9 M eq. A few 10h runs on 32 CPUs
Lanczos expected to 4 months on 64 CPUs:

Started on Sept. 22nb.
Slower than expected in real time
Machine busy, need to wait between runs
End expected on Feb. 4th

Orthogonalization did not stop !

Failure: how to proceed ?

Option 1: Add a sanity check and restart
Option 2: Improve Lanczos for more CPUs
Option 3: Back to the drawing board

Antoine Joux HPC in Cryptanalysis



Toward 6× 26

Sieving and verification OK
8192 CPUs for 24 hours
SGE OK: From 40 Geq in 33.5 M var
⇒ 5.9 M eq. A few 10h runs on 32 CPUs
Lanczos expected to 4 months on 64 CPUs:

Started on Sept. 22nb.
Slower than expected in real time
Machine busy, need to wait between runs
End expected on Feb. 4th

Orthogonalization did not stop !

Failure: how to proceed ?
Option 1: Add a sanity check and restart

Option 2: Improve Lanczos for more CPUs
Option 3: Back to the drawing board

Antoine Joux HPC in Cryptanalysis



Toward 6× 26

Sieving and verification OK
8192 CPUs for 24 hours
SGE OK: From 40 Geq in 33.5 M var
⇒ 5.9 M eq. A few 10h runs on 32 CPUs
Lanczos expected to 4 months on 64 CPUs:

Started on Sept. 22nb.
Slower than expected in real time
Machine busy, need to wait between runs
End expected on Feb. 4th

Orthogonalization did not stop !

Failure: how to proceed ?
Option 1: Add a sanity check and restart
Option 2: Improve Lanczos for more CPUs

Option 3: Back to the drawing board

Antoine Joux HPC in Cryptanalysis



Toward 6× 26

Sieving and verification OK
8192 CPUs for 24 hours
SGE OK: From 40 Geq in 33.5 M var
⇒ 5.9 M eq. A few 10h runs on 32 CPUs
Lanczos expected to 4 months on 64 CPUs:

Started on Sept. 22nb.
Slower than expected in real time
Machine busy, need to wait between runs
End expected on Feb. 4th

Orthogonalization did not stop !

Failure: how to proceed ?
Option 1: Add a sanity check and restart
Option 2: Improve Lanczos for more CPUs
Option 3: Back to the drawing board

Antoine Joux HPC in Cryptanalysis



Back to the drawing board

Solution known: Block Wiedemann (Coppersmith)

Used by Thomé for GF(2603). 480 K eqs.
Need 4 weeks on 6 quadri-CPUs computers.
Used by Kleinjung for GF(p), 160-digits, 2.2 Meqs
8 jobs (12-24 CPUs) each, 14 CPU.years (at least 4 weeks)

Three Phases:

Several iterated matrix multiplications in parallel
Find linear relation in sequence:
Subquadratic computation of vector generating polynomials
and improvement of the block Wiedemann algorithm,
Thomé (2001/2002)
Recompute iterated matrix multiplications in parallel to
obtain solution

Need to scale up the approach

Antoine Joux HPC in Cryptanalysis



Back to the drawing board

Solution known: Block Wiedemann (Coppersmith)

Used by Thomé for GF(2603). 480 K eqs.
Need 4 weeks on 6 quadri-CPUs computers.
Used by Kleinjung for GF(p), 160-digits, 2.2 Meqs
8 jobs (12-24 CPUs) each, 14 CPU.years (at least 4 weeks)

Three Phases:

Several iterated matrix multiplications in parallel
Find linear relation in sequence:
Subquadratic computation of vector generating polynomials
and improvement of the block Wiedemann algorithm,
Thomé (2001/2002)
Recompute iterated matrix multiplications in parallel to
obtain solution

Need to scale up the approach

Antoine Joux HPC in Cryptanalysis



Back to the drawing board

Solution known: Block Wiedemann (Coppersmith)
Used by Thomé for GF(2603). 480 K eqs.
Need 4 weeks on 6 quadri-CPUs computers.

Used by Kleinjung for GF(p), 160-digits, 2.2 Meqs
8 jobs (12-24 CPUs) each, 14 CPU.years (at least 4 weeks)

Three Phases:

Several iterated matrix multiplications in parallel
Find linear relation in sequence:
Subquadratic computation of vector generating polynomials
and improvement of the block Wiedemann algorithm,
Thomé (2001/2002)
Recompute iterated matrix multiplications in parallel to
obtain solution

Need to scale up the approach

Antoine Joux HPC in Cryptanalysis



Back to the drawing board

Solution known: Block Wiedemann (Coppersmith)
Used by Thomé for GF(2603). 480 K eqs.
Need 4 weeks on 6 quadri-CPUs computers.
Used by Kleinjung for GF(p), 160-digits, 2.2 Meqs
8 jobs (12-24 CPUs) each, 14 CPU.years (at least 4 weeks)

Three Phases:

Several iterated matrix multiplications in parallel
Find linear relation in sequence:
Subquadratic computation of vector generating polynomials
and improvement of the block Wiedemann algorithm,
Thomé (2001/2002)
Recompute iterated matrix multiplications in parallel to
obtain solution

Need to scale up the approach

Antoine Joux HPC in Cryptanalysis



Back to the drawing board

Solution known: Block Wiedemann (Coppersmith)
Used by Thomé for GF(2603). 480 K eqs.
Need 4 weeks on 6 quadri-CPUs computers.
Used by Kleinjung for GF(p), 160-digits, 2.2 Meqs
8 jobs (12-24 CPUs) each, 14 CPU.years (at least 4 weeks)

Three Phases:

Several iterated matrix multiplications in parallel
Find linear relation in sequence:
Subquadratic computation of vector generating polynomials
and improvement of the block Wiedemann algorithm,
Thomé (2001/2002)
Recompute iterated matrix multiplications in parallel to
obtain solution

Need to scale up the approach

Antoine Joux HPC in Cryptanalysis



Back to the drawing board

Solution known: Block Wiedemann (Coppersmith)
Used by Thomé for GF(2603). 480 K eqs.
Need 4 weeks on 6 quadri-CPUs computers.
Used by Kleinjung for GF(p), 160-digits, 2.2 Meqs
8 jobs (12-24 CPUs) each, 14 CPU.years (at least 4 weeks)

Three Phases:
Several iterated matrix multiplications in parallel

Find linear relation in sequence:
Subquadratic computation of vector generating polynomials
and improvement of the block Wiedemann algorithm,
Thomé (2001/2002)
Recompute iterated matrix multiplications in parallel to
obtain solution

Need to scale up the approach

Antoine Joux HPC in Cryptanalysis



Back to the drawing board

Solution known: Block Wiedemann (Coppersmith)
Used by Thomé for GF(2603). 480 K eqs.
Need 4 weeks on 6 quadri-CPUs computers.
Used by Kleinjung for GF(p), 160-digits, 2.2 Meqs
8 jobs (12-24 CPUs) each, 14 CPU.years (at least 4 weeks)

Three Phases:
Several iterated matrix multiplications in parallel
Find linear relation in sequence:
Subquadratic computation of vector generating polynomials
and improvement of the block Wiedemann algorithm,
Thomé (2001/2002)

Recompute iterated matrix multiplications in parallel to
obtain solution

Need to scale up the approach

Antoine Joux HPC in Cryptanalysis



Back to the drawing board

Solution known: Block Wiedemann (Coppersmith)
Used by Thomé for GF(2603). 480 K eqs.
Need 4 weeks on 6 quadri-CPUs computers.
Used by Kleinjung for GF(p), 160-digits, 2.2 Meqs
8 jobs (12-24 CPUs) each, 14 CPU.years (at least 4 weeks)

Three Phases:
Several iterated matrix multiplications in parallel
Find linear relation in sequence:
Subquadratic computation of vector generating polynomials
and improvement of the block Wiedemann algorithm,
Thomé (2001/2002)
Recompute iterated matrix multiplications in parallel to
obtain solution

Need to scale up the approach

Antoine Joux HPC in Cryptanalysis



Back to the drawing board

Solution known: Block Wiedemann (Coppersmith)
Used by Thomé for GF(2603). 480 K eqs.
Need 4 weeks on 6 quadri-CPUs computers.
Used by Kleinjung for GF(p), 160-digits, 2.2 Meqs
8 jobs (12-24 CPUs) each, 14 CPU.years (at least 4 weeks)

Three Phases:
Several iterated matrix multiplications in parallel
Find linear relation in sequence:
Subquadratic computation of vector generating polynomials
and improvement of the block Wiedemann algorithm,
Thomé (2001/2002)
Recompute iterated matrix multiplications in parallel to
obtain solution

Need to scale up the approach

Antoine Joux HPC in Cryptanalysis



New Linear Algebra, testing on 6× 25

Lanczos on 64 cores
Lanczos Total CPU time ≈ 43 800 hours
Lanczos Real time (without waits) ≈ 28.5 days

First Matrix Vector Phase: ≈ 33h30 on 1024 cores
32 independent sequences
Thomé’s algorithm: ≈ 9h30 on 32 cores
Second Matrix Vector Phase: ≈ 15h30 on 1024 cores
Total CPU time ≈ 50 500 hours, 2100 CPU.days
Real time (without waits) ≈ 2.5 days
New total real time including Sieving: ≈ 5 days
≈ 14 CPU.years

Antoine Joux HPC in Cryptanalysis



New Linear Algebra, testing on 6× 25

Lanczos on 64 cores
Lanczos Total CPU time ≈ 43 800 hours
Lanczos Real time (without waits) ≈ 28.5 days

First Matrix Vector Phase: ≈ 33h30 on 1024 cores
32 independent sequences

Thomé’s algorithm: ≈ 9h30 on 32 cores
Second Matrix Vector Phase: ≈ 15h30 on 1024 cores
Total CPU time ≈ 50 500 hours, 2100 CPU.days
Real time (without waits) ≈ 2.5 days
New total real time including Sieving: ≈ 5 days
≈ 14 CPU.years

Antoine Joux HPC in Cryptanalysis



New Linear Algebra, testing on 6× 25

Lanczos on 64 cores
Lanczos Total CPU time ≈ 43 800 hours
Lanczos Real time (without waits) ≈ 28.5 days

First Matrix Vector Phase: ≈ 33h30 on 1024 cores
32 independent sequences
Thomé’s algorithm: ≈ 9h30 on 32 cores

Second Matrix Vector Phase: ≈ 15h30 on 1024 cores
Total CPU time ≈ 50 500 hours, 2100 CPU.days
Real time (without waits) ≈ 2.5 days
New total real time including Sieving: ≈ 5 days
≈ 14 CPU.years

Antoine Joux HPC in Cryptanalysis



New Linear Algebra, testing on 6× 25

Lanczos on 64 cores
Lanczos Total CPU time ≈ 43 800 hours
Lanczos Real time (without waits) ≈ 28.5 days

First Matrix Vector Phase: ≈ 33h30 on 1024 cores
32 independent sequences
Thomé’s algorithm: ≈ 9h30 on 32 cores
Second Matrix Vector Phase: ≈ 15h30 on 1024 cores

Total CPU time ≈ 50 500 hours, 2100 CPU.days
Real time (without waits) ≈ 2.5 days
New total real time including Sieving: ≈ 5 days
≈ 14 CPU.years

Antoine Joux HPC in Cryptanalysis



New Linear Algebra, testing on 6× 25

Lanczos on 64 cores
Lanczos Total CPU time ≈ 43 800 hours
Lanczos Real time (without waits) ≈ 28.5 days

First Matrix Vector Phase: ≈ 33h30 on 1024 cores
32 independent sequences
Thomé’s algorithm: ≈ 9h30 on 32 cores
Second Matrix Vector Phase: ≈ 15h30 on 1024 cores
Total CPU time ≈ 50 500 hours, 2100 CPU.days
Real time (without waits) ≈ 2.5 days

New total real time including Sieving: ≈ 5 days
≈ 14 CPU.years

Antoine Joux HPC in Cryptanalysis



New Linear Algebra, testing on 6× 25

Lanczos on 64 cores
Lanczos Total CPU time ≈ 43 800 hours
Lanczos Real time (without waits) ≈ 28.5 days

First Matrix Vector Phase: ≈ 33h30 on 1024 cores
32 independent sequences
Thomé’s algorithm: ≈ 9h30 on 32 cores
Second Matrix Vector Phase: ≈ 15h30 on 1024 cores
Total CPU time ≈ 50 500 hours, 2100 CPU.days
Real time (without waits) ≈ 2.5 days
New total real time including Sieving: ≈ 5 days
≈ 14 CPU.years

Antoine Joux HPC in Cryptanalysis



New linear algebra 6× 26 ?

First Matrix Vector Phase: ≈ 125 h on 1024 cores
32 independent sequences

Started March 28th

Due to an electrical problem, CURIE is
unavailable since the 3th april 2012 at

8:30pm.

General power cut on high voltage line is
solved. The TGCC center is operational and
CURIE is now available. (April 4th, 17:30)

Still running . . . (Curie very busy these days)

Antoine Joux HPC in Cryptanalysis



New linear algebra 6× 26 ?

First Matrix Vector Phase: ≈ 125 h on 1024 cores
32 independent sequences

Started March 28th

Due to an electrical problem, CURIE is
unavailable since the 3th april 2012 at

8:30pm.

General power cut on high voltage line is
solved. The TGCC center is operational and
CURIE is now available. (April 4th, 17:30)

Still running . . . (Curie very busy these days)

Antoine Joux HPC in Cryptanalysis



New linear algebra 6× 26 ?

First Matrix Vector Phase: ≈ 125 h on 1024 cores
32 independent sequences

Started March 28th

Due to an electrical problem, CURIE is
unavailable since the 3th april 2012 at

8:30pm.

General power cut on high voltage line is
solved. The TGCC center is operational and
CURIE is now available. (April 4th, 17:30)

Still running . . . (Curie very busy these days)

Antoine Joux HPC in Cryptanalysis



New linear algebra 6× 26 ?

First Matrix Vector Phase: ≈ 125 h on 1024 cores
32 independent sequences

Started March 28th

Due to an electrical problem, CURIE is
unavailable since the 3th april 2012 at

8:30pm.

General power cut on high voltage line is
solved. The TGCC center is operational and
CURIE is now available. (April 4th, 17:30)

Still running . . . (Curie very busy these days)

Antoine Joux HPC in Cryptanalysis



New linear algebra 6× 26 ?

First Matrix Vector Phase: ≈ 125 h on 1024 cores
32 independent sequences

Started March 28th

Due to an electrical problem, CURIE is
unavailable since the 3th april 2012 at

8:30pm.

General power cut on high voltage line is
solved. The TGCC center is operational and
CURIE is now available. (April 4th, 17:30)

Still running . . . (Curie very busy these days)

Antoine Joux HPC in Cryptanalysis



New linear algebra 6× 26 ?

First Matrix Vector Phase: ≈ 125 h on 1024 cores
32 independent sequences

Started March 28th

Due to an electrical problem, CURIE is
unavailable since the 3th april 2012 at

8:30pm.

General power cut on high voltage line is
solved. The TGCC center is operational and
CURIE is now available. (April 4th, 17:30)

Still running . . . (Curie very busy these days)

Antoine Joux HPC in Cryptanalysis



Conclusion

Questions ?

Antoine Joux HPC in Cryptanalysis


