Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller

$|\mathsf{Daniele}\:\mathsf{Micro}^1|\>$ Chris Peikert 2

¹UC San Diego

²Georgia Tech

April 2012

Lattice-Based Cryptography

Lattice-Based Cryptography

Lattice-Based Cryptography

Why?

- \triangleright Simple & efficient: linear, highly parallel operations
- Resist quantum attacks (so far)
- Secure under worst-case hardness assumptions $[A_j]$ tai'96,...
- \triangleright Solve 'holy grail' problems like FHE [Gentry'09,...]

A lattice is the set of all integer linear combinations of (linearly independent) basis vectors $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\} \subset \mathbb{R}^d$:

$$
\Lambda = \sum_{i=1}^n \mathbf{b}_i \cdot \mathbb{Z}
$$

A lattice is the set of all integer linear combinations of (linearly independent) basis vectors $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\} \subset \mathbb{R}^d$:

$$
\Lambda = \sum_{i=1}^{n} \mathbf{b}_i \cdot \mathbb{Z} = \{ \mathbf{B} \mathbf{x} \colon \mathbf{x} \in \mathbb{Z}^n \}
$$

A lattice is the set of all integer linear combinations of (linearly independent) basis vectors $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\} \subset \mathbb{R}^d$:

$$
\Lambda = \sum_{i=1}^{n} \mathbf{b}_i \cdot \mathbb{Z} = \{ \mathbf{B} \mathbf{x} \colon \mathbf{x} \in \mathbb{Z}^n \}
$$

The same lattice has many bases

$$
\Lambda = \{ \mathbf{C}\mathbf{x} \colon \mathbf{x} \in \mathbb{Z}^n \}
$$

A lattice is the set of all integer linear combinations of (linearly independent) basis vectors $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\} \subset \mathbb{R}^d$:

$$
\Lambda = \sum_{i=1}^{n} \mathbf{b}_i \cdot \mathbb{Z} = \{ \mathbf{B} \mathbf{x} \colon \mathbf{x} \in \mathbb{Z}^n \}
$$

The same lattice has many bases

$$
\Lambda = \{ \mathbf{C}\mathbf{x} \colon \mathbf{x} \in \mathbb{Z}^n \}
$$

Definition (Lattice)

Discrete additive subgroup of \mathbb{R}^d E.g. $\Lambda = {\mathbf{x} \in \mathbb{Z}^d \colon \mathbf{A}\mathbf{x} = \mathbf{0}}$

Point Lattices: Examples

The simplest lattice in n -dimensional space is the integer lattice

$$
\Lambda=\mathbb{Z}^n
$$

Point Lattices: Examples

The simplest lattice in n -dimensional space is the integer lattice

$$
\Lambda=\mathbb{Z}^n
$$

Other lattices are obtained by applying a linear transformation

$$
\Lambda = \mathbf{B}\mathbb{Z}^n \qquad (\mathbf{B} \in \mathbb{R}^{d \times n})
$$

Point Lattices: Examples

The simplest lattice in n -dimensional space is the integer lattice

 $\Lambda=\mathbb{Z}^n$

$$
\left|\begin{array}{cccccc} \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \end{array}\right|
$$

Other lattices are obtained by applying a linear transformation

$$
\Lambda = \mathbf{B}\mathbb{Z}^n \qquad (\mathbf{B} \in \mathbb{R}^{d \times n})
$$

Remark

All lattices have the same group structure, but different geometry

$$
\blacktriangleright \text{ Public key } \left[\cdots \mathbf{A} \cdots \right] \in \mathbb{Z}_q^{n \times m} \text{ for } q = \mathsf{poly}(n), m = \Omega(n \log q).
$$

 \blacktriangleright Public key $\left[\cdots \mathbf{A} \cdots\right] \in \mathbb{Z}_q^{n \times m}$ for $q = \text{poly}(n)$, $m = \Omega(n \log q)$.

 $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \bmod q \in \mathbb{Z}_q^n$ ("short" x, surjective)

CRHF if SIS hard [Ajtai'96,. . .]

$$
\blacktriangleright \text{ Public key } \left[\cdots \mathbf{A} \cdots \right] \in \mathbb{Z}_q^{n \times m} \text{ for } q = \text{poly}(n), m = \Omega(n \log q).
$$

 $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \bmod q \in \mathbb{Z}_q^n$ ("short" x, surjective) $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t \bmod q \in \mathbb{Z}_q^m$ ("very short" e, injective)

CRHF if SIS hard [Ajtai'96,. . .]

OWF if LWE hard [Regev'05,P'09]

$$
\blacktriangleright \text{ Public key } \left[\cdots \mathbf{A} \cdots \right] \in \mathbb{Z}_q^{n \times m} \text{ for } q = \text{poly}(n), m = \Omega(n \log q).
$$

 $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \bmod q \in \mathbb{Z}_q^n$ ("short" x , surjective) $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t \bmod q \in \mathbb{Z}_q^m$ ("very short" e, injective)

CRHF if SIS hard [Ajtai'96,. . .]

OWF if LWE hard [Regev'05,P'09]

$$
\blacktriangleright \text{ Public key } \left[\cdots \mathbf{A} \cdots \right] \in \mathbb{Z}_q^{n \times m} \text{ for } q = \mathsf{poly}(n), m = \Omega(n \log q).
$$

 $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \bmod q \in \mathbb{Z}_q^n$ ("short" x , surjective) $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t \bmod q \in \mathbb{Z}_q^m$ ("very short" e, injective)

CRHF if SIS hard [Ajtai'96,. . .]

OWF if LWE hard [Regev'05,P'09]

$$
\blacktriangleright \text{ Public key } \left[\cdots \mathbf{A} \cdots \right] \in \mathbb{Z}_q^{n \times m} \text{ for } q = \text{poly}(n), m = \Omega(n \log q).
$$

 $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \bmod q \in \mathbb{Z}_q^n$ ("short" x , surjective) $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t \bmod q \in \mathbb{Z}_q^m$ ("very short" e, injective)

CRHF if SIS hard [Ajtai'96,. . .]

OWF if LWE hard [Regev'05,P'09]

$$
\blacktriangleright \text{ Public key } \left[\cdots \mathbf{A} \cdots \right] \in \mathbb{Z}_q^{n \times m} \text{ for } q = \text{poly}(n), m = \Omega(n \log q).
$$

 $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \bmod q \in \mathbb{Z}_q^n$ ("short" x , surjective) $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t \bmod q \in \mathbb{Z}_q^m$ ("very short" e, injective)

CRHF if SIS hard [Ajtai'96,. . .]

OWF if LWE hard [Regev'05,P'09]

$$
\blacktriangleright \text{ Public key } \left[\cdots \mathbf{A} \cdots \right] \in \mathbb{Z}_q^{n \times m} \text{ for } q = \text{poly}(n), m = \Omega(n \log q).
$$

 $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \bmod q \in \mathbb{Z}_q^n$ ("short" x, surjective)

 $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t \bmod q \in \mathbb{Z}_q^m$ ("very short" e, injective)

CRHF if SIS hard [Ajtai'96,. . .]

OWF if LWE hard [Regev'05,P'09]

Remark[.]

- \star f_A and q_A are essentially equivalent functions
- \star See e.g. "Duality in lattice cryptography" [M'10]
- \star Main difference: e is even shorter than $\mathbf x$
- \star Notational convention:

$$
\blacktriangleright \text{ Public key } \left[\cdots \mathbf{A} \cdots \right] \in \mathbb{Z}_q^{n \times m} \text{ for } q = \text{poly}(n), m = \Omega(n \log q).
$$

 $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \bmod q \in \mathbb{Z}_q^n$ ("short" x , surjective) $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t \bmod q \in \mathbb{Z}_q^m$ ("very short" e, injective)

CRHF if SIS hard [Ajtai'96,. . .]

OWF if LWE hard [Regev'05,P'09]

Remark:

- \star f_A and q_A are essentially equivalent functions
- \star See e.g. "Duality in lattice cryptography" [M'10]
- \star Main difference: e is even shorter than $\mathbf x$
- \star Notational convention:

 \triangleright f_A , g_A in forward direction yield CRHFs, CPA-secure encryption . . . and not much else.

 \blacktriangleright Many cryptographic applications need to invert $f_{\mathbf{A}}$ and/or $g_{\mathbf{A}}$.

 \blacktriangleright Many cryptographic applications need to invert $f_{\bf A}$ and/or $g_{\bf A}$.

Invert $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t \bmod q$: find the unique preimage s (equivalently, e)

 \blacktriangleright Many cryptographic applications need to invert $f_{\bf A}$ and/or $g_{\bf A}$.

Invert $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}') = \mathbf{A}\mathbf{x}' \bmod q$:

sample random $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$ with prob $\propto \exp(-\|\mathbf{x}\|^2/\sigma^2).$

Invert $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t \bmod q$: find the unique preimage s (equivalently, e)

 \blacktriangleright Many cryptographic applications need to invert f_A and/or q_A .

Invert $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}') = \mathbf{A}\mathbf{x}' \bmod q$: sample random $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$ with prob $\propto \exp(-\|\mathbf{x}\|^2/\sigma^2).$

Invert $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t \bmod q$: find the unique preimage s (equivalently, e)

 \blacktriangleright How? Use a "strong trapdoor" for A: a short basis of $\Lambda^{\perp}(A)$ [Babai'86,GGH'97,Klein'01,GPV'08,P'10]

Applications of Strong Trapdoors

Applications of f^{-1} , g^{-1}

- "Hash and Sign" signatures in Random oracle (RO) model [GPV'08]
- ▶ Standard model (no RO) signatures [CHKP'10,R'10,B'10]
- ▶ SM CCA-secure encryption [PW'08,P'09]
- SM (Hierarchical) IBE [GPV'08,CHKP'10,ABB'10a,ABB'10b]
- \triangleright Many more: OT, NISZK, homom enc/sigs, deniable enc, func enc, ... [PVW'08,PV'08,GHV'10,GKV'10,BF'10a,BF'10b,OPW'11,AFV'11,ABVVW'11,...]

Applications of Strong Trapdoors

Applications of f^{-1} , g^{-1}

- **I "Hash and Sign" signatures in Random oracle (RO) model [GPV'08]**
- ▶ Standard model (no RO) signatures [CHKP'10,R'10,B'10]
- ▶ SM CCA-secure encryption [PW'08,P'09]
- SM (Hierarchical) IBE [GPV'08,CHKP'10,ABB'10a,ABB'10b]
- \triangleright Many more: OT, NISZK, homom enc/sigs, deniable enc, func enc, ... [PVW'08,PV'08,GHV'10,GKV'10,BF'10a,BF'10b,OPW'11,AFV'11,ABVVW'11,. . .]

Some Drawbacks. . .

- X Generating A w/ short basis is complicated and slow [Ajtai'99,AP'09]
- X Known inversion algorithms trade quality for efficiency

1 Trapdoor construction yields some lattice dim $m = \Omega(n \log q)$.

- **1** Trapdoor construction yields some lattice dim $m = \Omega(n \log q)$.
- Basis "quality" ≈ lengths of basis vectors ≈ Gaussian std dev σ .

1 Trapdoor construction yields some lattice dim $m = \Omega(n \log q)$.

- \bullet Basis "quality" ≈ lengths of basis vectors ≈ Gaussian std dev σ .
- **3** Dimension m , std dev $\sigma \Longrightarrow$ preimage length $\beta = \|\mathbf{x}\| \approx \sigma \sqrt{m}$.

1 Trapdoor construction yields some lattice dim $m = \Omega(n \log q)$.

- **2** Basis "quality" \approx lengths of basis vectors \approx Gaussian std dev σ .
- **3** Dimension m , std dev $\sigma \Longrightarrow$ preimage length $\beta = \|\mathbf{x}\| \approx \sigma \sqrt{m}$.
- **4** Choose *n*, *q* so that finding β -bounded preimages is hard.

- **1** Trapdoor construction yields some lattice dim $m = \Omega(n \log q)$.
- **2** Basis "quality" \approx lengths of basis vectors \approx Gaussian std dev σ .
- **3** Dimension m , std dev $\sigma \Longrightarrow$ preimage length $\beta = \|\mathbf{x}\| \approx \sigma \sqrt{m}$.
- **4** Choose *n*, *q* so that finding β -bounded preimages is hard.
- \blacktriangleright Better dimension m & quality σ

 \implies "win-win-win" in security-keysize-runtime

New "strong" trapdoor generation and inversion algorithms:

New "strong" trapdoor generation and inversion algorithms:

- \vee Very simple & fast
	- \star Generation: one matrix mult. No HNF or inverses (cf. [A'99,AP'09])
	- \star Inversion: practical, parallel, & mostly offline
	- \star No more efficiency-vs-quality tradeoff

New "strong" trapdoor generation and inversion algorithms:

\vee Very simple & fast

- \star Generation: one matrix mult. No HNF or inverses (cf. [A'99,AP'09])
- \star Inversion: practical, parallel, & mostly offline
- \star No more efficiency-vs-quality tradeoff
- \blacktriangleright Tighter parameters m and σ
	- \star Asymptotically optimal with small constant factors
	- \star Ex improvement: 32x in dim m, 25x in quality $\sigma \Rightarrow 67x$ in keysize

New "strong" trapdoor generation and inversion algorithms:

\vee Very simple & fast

- \star Generation: one matrix mult. No HNF or inverses (cf. [A'99,AP'09])
- \star Inversion: practical, parallel, & mostly offline
- \star No more efficiency-vs-quality tradeoff
- \blacktriangleright Tighter parameters m and σ
	- \star Asymptotically optimal with small constant factors
	- \star Ex improvement: 32x in dim m, 25x in quality $\sigma \Rightarrow 67$ x in keysize
- \vee New kind of trapdoor not a basis! (But just as powerful.)
	- **★ Half the dimension of a basis** \Rightarrow **4x size improvement**
	- \star Delegation: size grows as $O(\dim)$, versus $O(\dim^2)$ [CHKP'10]
Our Contributions

New "strong" trapdoor generation and inversion algorithms:

\vee Very simple & fast

- \star Generation: one matrix mult. No HNF or inverses (cf. [A'99,AP'09])
- \star Inversion: practical, parallel, & mostly offline
- \star No more efficiency-vs-quality tradeoff
- \blacktriangleright Tighter parameters m and σ
	- \star Asymptotically optimal with small constant factors
	- \star Ex improvement: 32x in dim m, 25x in quality $\sigma \Rightarrow 67$ x in keysize
- \vee New kind of trapdoor not a basis! (But just as powerful.)
	- \star Half the dimension of a basis \Rightarrow 4x size improvement
	- \star Delegation: size grows as $O(\textsf{dim}),$ versus $O(\textsf{dim}^2)$ [CHKP'10]
- \vee More efficient applications (beyond "black-box" improvements)

Concrete Parameter Improvements

Concrete Parameter Improvements

Concrete Parameter Improvements

Example parameters for (ring-based) GPV signatures:

Bottom line: \approx 45-fold improvement in key size.

1 Design a fixed, public lattice defined by "gadget" G. Give fast, parallel, offline algorithms for $f_{\bf G}^{-1}$, $g_{\bf G}^{-1}$.

- \bullet Design a fixed, public lattice defined by "gadget" \textbf{G} . Give fast, parallel, offline algorithms for $f_{\bf G}^{-1}$, $g_{\bf G}^{-1}$.
- 2 Randomize $G \leftrightarrow A$ via a "nice" unimodular transformation. (The transformation is the trapdoor!)

- \bullet Design a fixed, public lattice defined by "gadget" \textbf{G} . Give fast, parallel, offline algorithms for $f_{\bf G}^{-1}$, $g_{\bf G}^{-1}$.
- 2 Randomize $G \leftrightarrow A$ via a "nice" unimodular transformation. (The transformation is the trapdoor!)

3 Reduce $f_{\mathbf{A}}^{-1}$, $g_{\mathbf{A}}^{-1}$ to $f_{\mathbf{G}}^{-1}$, $g_{\mathbf{G}}^{-1}$ plus pre-/post-processing.

- \bullet Design a fixed, public lattice defined by "gadget" \textbf{G} . Give fast, parallel, offline algorithms for $f_{\bf G}^{-1}$, $g_{\bf G}^{-1}$.
- 2 Randomize $G \leftrightarrow A$ via a "nice" unimodular transformation. (The transformation is the trapdoor!)
- 3 Reduce $f_{\bf A}^{-1},\,g_{\bf A}^{-1}$ to $f_{\bf G}^{-1},\,g_{\bf G}^{-1}$ plus pre-/post-processing.

- \bullet Design a fixed, public lattice defined by "gadget" \textbf{G} . Give fast, parallel, offline algorithms for $f_{\bf G}^{-1}$, $g_{\bf G}^{-1}$.
- 2 Randomize $G \leftrightarrow A$ via a "nice" unimodular transformation. (The transformation is the trapdoor!)
- 3 Reduce $f_{\bf A}^{-1},\,g_{\bf A}^{-1}$ to $f_{\bf G}^{-1},\,g_{\bf G}^{-1}$ plus pre-/post-processing.

- \bullet Design a fixed, public lattice defined by "gadget" \textbf{G} . Give fast, parallel, offline algorithms for $f_{\bf G}^{-1}$, $g_{\bf G}^{-1}$.
- 2 Randomize $G \leftrightarrow A$ via a "nice" unimodular transformation. (The transformation is the trapdoor!)
- 3 Reduce $f_{\bf A}^{-1},\,g_{\bf A}^{-1}$ to $f_{\bf G}^{-1},\,g_{\bf G}^{-1}$ plus pre-/post-processing.

- \bullet Design a fixed, public lattice defined by "gadget" \textbf{G} . Give fast, parallel, offline algorithms for $f_{\bf G}^{-1}$, $g_{\bf G}^{-1}$.
- 2 Randomize $G \leftrightarrow A$ via a "nice" unimodular transformation. (The transformation is the trapdoor!)
- 3 Reduce $f_{\bf A}^{-1},\,g_{\bf A}^{-1}$ to $f_{\bf G}^{-1},\,g_{\bf G}^{-1}$ plus pre-/post-processing.
- **4** Problem: Transformation distorts noise.

- \bullet Design a fixed, public lattice defined by "gadget" \textbf{G} . Give fast, parallel, offline algorithms for $f_{\bf G}^{-1}$, $g_{\bf G}^{-1}$.
- 2 Randomize $G \leftrightarrow A$ via a "nice" unimodular transformation. (The transformation is the trapdoor!)
- 3 Reduce $f_{\bf A}^{-1},\,g_{\bf A}^{-1}$ to $f_{\bf G}^{-1},\,g_{\bf G}^{-1}$ plus pre-/post-processing.
- 4 Problem: Transformation distorts noise. Solution: add 'perturbation' during pre-/post-processing [P'10]

Gadget G construction: the primitive vector g

► Let $q = 2^k$. Define lattice $\Lambda^{\perp}(\mathbf{g})$ by $1 \times k$ "parity check" vector

$$
\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 \times k}.
$$

Gadget G construction: the primitive vector g ► Let $q = 2^k$. Define lattice $\Lambda^{\perp}(\mathbf{g})$ by $1 \times k$ "parity check" vector $\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 \times k}.$ $\blacktriangleright \ \Lambda^{\perp}(\mathbf{g})$ has a short basis $\mathbf{S} =$ $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ 2 -1 2 −1 . . . 2 −1 2 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array}$ $\in \mathbb{Z}^{k \times k}$

Gadget G construction: the primitive vector g ► Let $q = 2^k$. Define lattice $\Lambda^{\perp}(\mathbf{g})$ by $1 \times k$ "parity check" vector $\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 \times k}.$ $\blacktriangleright \ \Lambda^{\perp}(\mathbf{g})$ has a short basis $\mathbf{S} =$ $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ 2 -1 2 −1 . . . 2 −1 2 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array}$ $\in \mathbb{Z}^{k \times k}$ almost orthogonal $(\widetilde{S} = 2 \cdot I_k)$,

Gadget G construction: the primitive vector g ► Let $q = 2^k$. Define lattice $\Lambda^{\perp}(\mathbf{g})$ by $1 \times k$ "parity check" vector $\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 \times k}.$ $\blacktriangleright \ \Lambda^{\perp}(\mathbf{g})$ has a short basis $\mathbf{S} =$ $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ 2 -1 2 −1 . . . 2 −1 2 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array}$ $\in \mathbb{Z}^{k \times k}$ almost orthogonal $(\widetilde{\mathbf{S}} = 2 \cdot \mathbf{I}_k)$, sparse $(2k - 1$ nonzero entries),

Gadget G construction: the primitive vector g ► Let $q = 2^k$. Define lattice $\Lambda^{\perp}(\mathbf{g})$ by $1 \times k$ "parity check" vector $\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 \times k}.$ $\blacktriangleright \ \Lambda^{\perp}(\mathbf{g})$ has a short basis $\mathbf{S} =$ $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ 2 -1 2 −1 . . . 2 −1 2 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\in \mathbb{Z}^{k \times k}$ almost orthogonal $(\widetilde{S} = 2 \cdot I_k)$, sparse $(2k - 1$ nonzero entries), and low dimensional $(k = \log q = O(\log n))$

Gadget G construction: the primitive vector g ► Let $q = 2^k$. Define lattice $\Lambda^{\perp}(\mathbf{g})$ by $1 \times k$ "parity check" vector $\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 \times k}.$ $\blacktriangleright \ \Lambda^{\perp}(\mathbf{g})$ has a short basis $\mathbf{S} =$ $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ 2 -1 2 −1 . . . 2 −1 2 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\in \mathbb{Z}^{k \times k}$

almost orthogonal $(\widetilde{\mathbf{S}} = 2 \cdot \mathbf{I}_k)$, sparse $(2k - 1$ nonzero entries), and low dimensional $(k = \log q = O(\log n))$

 \blacktriangleright $f_{\mathbf{g}}, g_{\mathbf{g}}$ are efficiently invertible, either by optimized versions of [Babai'86, Klein'01, GPV'08], or other specialized algorithms.

Gadget G construction: the primitive vector g ► Let $q = 2^k$. Define lattice $\Lambda^{\perp}(\mathbf{g})$ by $1 \times k$ "parity check" vector $\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 \times k}.$ $\blacktriangleright \ \Lambda^{\perp}(\mathbf{g})$ has a short basis $\mathbf{S} =$ $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ 2 -1 2 −1 . . . 2 −1 2 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\in \mathbb{Z}^{k \times k}$ almost orthogonal $(\widetilde{S} = 2 \cdot I_k)$, sparse $(2k - 1$ nonzero entries), and

low dimensional $(k = \log q = O(\log n))$

 \blacktriangleright $f_{\mathbf{g}}, g_{\mathbf{g}}$ are efficiently invertible, either by optimized versions of [Babai'86, Klein'01, GPV'08], or other specialized algorithms.

Inverting f on very small inputs

Find $\mathbf{x} \in \{0,1\}^k$ such that $f_{\mathbf{g}}(\mathbf{x}) = \mathbf{g} \cdot \mathbf{x} = y \bmod q$.

Gadget G construction: the primitive vector g ► Let $q = 2^k$. Define lattice $\Lambda^{\perp}(\mathbf{g})$ by $1 \times k$ "parity check" vector $\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 \times k}.$ $\blacktriangleright \ \Lambda^{\perp}(\mathbf{g})$ has a short basis $\mathbf{S} =$ $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ 2 -1 2 −1 . . . 2 −1 2 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\in \mathbb{Z}^{k \times k}$ almost orthogonal $(\widetilde{S} = 2 \cdot I_k)$, sparse $(2k - 1$ nonzero entries), and

low dimensional $(k = \log q = O(\log n))$

 \blacktriangleright $f_{\mathbf{g}}, g_{\mathbf{g}}$ are efficiently invertible, either by optimized versions of [Babai'86, Klein'01, GPV'08], or other specialized algorithms.

Inverting f on very small inputs

Find $\mathbf{x} \in \{0,1\}^k$ such that $f_{\mathbf{g}}(\mathbf{x}) = \mathbf{g} \cdot \mathbf{x} = y \bmod q$. Solution: set x to the binary representation of y

$$
\triangleright \text{ Define } G = I_n \otimes g = \begin{bmatrix} \cdots g \cdots & & & \\ & \cdots g \cdots & & \\ & & \cdots g \cdots & \\ & & & \cdots g \cdots \end{bmatrix} \in \mathbb{Z}_q^{n \times nk}.
$$

Define
$$
\mathbf{G} = \mathbf{I}_n \otimes \mathbf{g} = \begin{bmatrix} \cdots \mathbf{g} \cdots & & \cdots \\ & \ddots \mathbf{g} \cdots & \cdots \\ & \ddots & \ddots \\ & \ddots & \ddots \\ & \ddots & \ddots \end{bmatrix} \in \mathbb{Z}_q^{n \times nk}.
$$

\nNow $f_{\mathbf{G}}^{-1}$, $g_{\mathbf{G}}^{-1}$ reduce to n parallel calls to $f_{\mathbf{g}}^{-1}$, $g_{\mathbf{g}}^{-1}$.

$$
\triangleright \text{ Define } G = I_n \otimes g = \begin{bmatrix} \cdots g \cdots & & & \\ & \cdots g \cdots & & \\ & & \cdots g \cdots & \\ & & & \cdots g \cdots \end{bmatrix} \in \mathbb{Z}_q^{n \times nk}.
$$

▶ Now f_{G}^{-1} , g_{G}^{-1} reduce to n parallel calls to f_{g}^{-1} , g_{g}^{-1} .

In Running time: almost linear in n , and trivially parallelizable up to n processors.

$$
\triangleright \text{ Define } G = I_n \otimes g = \begin{bmatrix} \cdots g \cdots & & & \\ & \cdots g \cdots & & \\ & & \cdots g \cdots & \\ & & & \cdots g \cdots \end{bmatrix} \in \mathbb{Z}_q^{n \times nk}.
$$

▶ Now f_{G}^{-1} , g_{G}^{-1} reduce to n parallel calls to f_{g}^{-1} , g_{g}^{-1} .

In Running time: almost linear in n , and trivially parallelizable up to n processors.

• The lattice
$$
\Lambda^{\perp}(\mathbf{G})
$$
 has short basis

\n
$$
\mathbf{S}^{\oplus n} = \mathbf{I}_n \otimes \mathbf{S} = \begin{bmatrix} \cdots \mathbf{S} \cdots & & \\ & \ddots \mathbf{S} \cdots & \\ & \ddots \mathbf{S} \cdots \end{bmatrix} \in \mathbb{Z}_q^{n \times nk}
$$

$$
\triangleright \text{ Define } G = I_n \otimes g = \begin{bmatrix} \cdots g \cdots & & & \\ & \cdots g \cdots & & \\ & & \cdots g \cdots & \\ & & & \cdots g \cdots \end{bmatrix} \in \mathbb{Z}_q^{n \times nk}.
$$

▶ Now f_{G}^{-1} , g_{G}^{-1} reduce to n parallel calls to f_{g}^{-1} , g_{g}^{-1} .

In Running time: almost linear in n , and trivially parallelizable up to n processors.

► The lattice
$$
\Lambda^{\perp}(G)
$$
 has short basis
\n
$$
\mathbf{S}^{\oplus n} = \mathbf{I}_n \otimes \mathbf{S} = \begin{bmatrix} \cdots \mathbf{S} \cdots & & \\ \cdots \mathbf{S} \cdots & & \\ & \ddots & \\ & & \ddots \\ & & \ddots \\ & & \ddots \end{bmatrix} \in \mathbb{Z}_q^{n \times nk}
$$
\nalmost orthogonal ($\widetilde{\mathbf{S}}^{\oplus n} = 2 \cdot \mathbf{I}_{kn}$), and
\nsparse (< $2kn$ nonzero entries).

 \bf{D} Define semi-random $[{\bar {\bf A}}\mid {\bf G}]$ for uniform (universal) ${\bar {\bf A}}\in \mathbb{Z}_q^{n\times \bar{m}}.$ (Computing f^{-1} , g^{-1} easily reduce to $f_{\bf G}^{-1},\,g_{\bf G}^{-1}.)$

- \bf{D} Define semi-random $[{\bar {\bf A}}\mid {\bf G}]$ for uniform (universal) ${\bar {\bf A}}\in \mathbb{Z}_q^{n\times \bar{m}}.$ (Computing f^{-1} , g^{-1} easily reduce to $f_{\bf G}^{-1},\,g_{\bf G}^{-1}.)$
- $\mathbf 2$ Choose "short" (Gaussian) $\mathbf R \leftarrow \mathbb Z^{\bar m \times n \log q}$ and let

$$
\mathbf{A} := [\bar{\mathbf{A}} \mid \mathbf{G}] \underbrace{\begin{bmatrix} \mathbf{I} & -\mathbf{R} \\ & \mathbf{I} \end{bmatrix}}_{\text{unimodular}} = [\bar{\mathbf{A}} \mid \mathbf{G} - \bar{\mathbf{A}} \mathbf{R}].
$$

- \bf{D} Define semi-random $[{\bar {\bf A}}\mid {\bf G}]$ for uniform (universal) ${\bar {\bf A}}\in \mathbb{Z}_q^{n\times \bar{m}}.$ (Computing f^{-1} , g^{-1} easily reduce to $f_{\bf G}^{-1},\,g_{\bf G}^{-1}.)$
- $\mathbf 2$ Choose "short" (Gaussian) $\mathbf R \leftarrow \mathbb Z^{\bar m \times n \log q}$ and let

$$
\mathbf{A} := [\bar{\mathbf{A}} \mid \mathbf{G}] \underbrace{\begin{bmatrix} \mathbf{I} & -\mathbf{R} \\ & \mathbf{I} \end{bmatrix}}_{\text{unimodular}} = [\bar{\mathbf{A}} \mid \mathbf{G} - \bar{\mathbf{A}} \mathbf{R}].
$$

 \star A is uniform if $|\bar{A}| |\bar{A}R|$ is: leftover hash lemma for $\bar{m} \approx n \log q$.

- \bf{D} Define semi-random $[{\bar {\bf A}}\mid {\bf G}]$ for uniform (universal) ${\bar {\bf A}}\in \mathbb{Z}_q^{n\times \bar{m}}.$ (Computing f^{-1} , g^{-1} easily reduce to $f_{\bf G}^{-1},\,g_{\bf G}^{-1}.)$
- $\mathbf 2$ Choose "short" (Gaussian) $\mathbf R \leftarrow \mathbb Z^{\bar m \times n \log q}$ and let

$$
\mathbf{A} := [\bar{\mathbf{A}} \mid \mathbf{G}] \underbrace{\begin{bmatrix} \mathbf{I} & -\mathbf{R} \\ & \mathbf{I} \end{bmatrix}}_{\text{unimodular}} = [\bar{\mathbf{A}} \mid \mathbf{G} - \bar{\mathbf{A}} \mathbf{R}].
$$

 \star A is uniform if $[\bar{\mathbf{A}} \mid \bar{\mathbf{A}} \mathbf{R}]$ is: leftover hash lemma for $\bar{m} \approx n \log q$.

With $G = 0$, we get Ajtai's original method for constructing A with a "weak" trapdoor of > 1 short vector (but not a full basis).

- \bf{D} Define semi-random $[{\bar {\bf A}}\mid {\bf G}]$ for uniform (universal) ${\bar {\bf A}}\in \mathbb{Z}_q^{n\times \bar{m}}.$ (Computing f^{-1} , g^{-1} easily reduce to $f_{\bf G}^{-1},\,g_{\bf G}^{-1}.)$
- $\mathbf 2$ Choose "short" (Gaussian) $\mathbf R \leftarrow \mathbb Z^{\bar m \times n \log q}$ and let

$$
\mathbf{A} := [\bar{\mathbf{A}} \mid \mathbf{G}] \underbrace{\begin{bmatrix} \mathbf{I} & -\mathbf{R} \\ & \mathbf{I} \end{bmatrix}}_{\text{unimodular}} = [\bar{\mathbf{A}} \mid \mathbf{G} - \bar{\mathbf{A}} \mathbf{R}].
$$

 \star A is uniform if $[\bar{\mathbf{A}} \mid \bar{\mathbf{A}} \mathbf{R}]$ is: leftover hash lemma for $\bar{m} \approx n \log q$.

With $G = 0$, we get Ajtai's original method for constructing A with a "weak" trapdoor of > 1 short vector (but not a full basis).

 \star $\left| \mathbf{I} \right| \overline{\mathbf{A}}$ $\left| -(\overline{\mathbf{A}}\mathbf{R}_1 + \mathbf{R}_2) \right|$ is pseudorandom (under LWE) for $\overline{m} = n$.

1 Linear transformation is easily computable $(\bar{m} \cdot n \log q)$

$$
\mathbf{T} = \begin{bmatrix} \mathbf{I} & -\mathbf{R} \\ & \mathbf{I} \end{bmatrix} \in \mathbb{Z}_q^{(\bar{m}+n\log q) \times (\bar{m}+n\log q)}
$$

1 Linear transformation is easily computable $(\bar{m} \cdot n \log q)$

$$
\mathbf{T} = \begin{bmatrix} \mathbf{I} & -\mathbf{R} \\ & \mathbf{I} \end{bmatrix} \in \mathbb{Z}_q^{(\bar{m}+n\log q) \times (\bar{m}+n\log q)}
$$

² Inverse transformation is just as simple

$$
\mathbf{T}^{-1} = \begin{bmatrix} \mathbf{I} & +\mathbf{R} \\ & \mathbf{I} \end{bmatrix}
$$

1 Linear transformation is easily computable $(\bar{m} \cdot n \log q)$

$$
\mathbf{T} = \begin{bmatrix} \mathbf{I} & -\mathbf{R} \\ & \mathbf{I} \end{bmatrix} \in \mathbb{Z}_q^{(\bar{m}+n\log q) \times (\bar{m}+n\log q)}
$$

2 Inverse transformation is just as simple

$$
\mathbf{T}^{-1} = \begin{bmatrix} \mathbf{I} & +\mathbf{R} \\ & \mathbf{I} \end{bmatrix}
$$

 $\, {\bf 3} \,$ Batch application of ${\bf T}$ (or ${\bf T}^{-1})$ to several inputs can be computed asymptotically faster using fast matrix multiplication algorithms.

1 Linear transformation is easily computable $(\bar{m} \cdot n \log q)$

$$
\mathbf{T} = \begin{bmatrix} \mathbf{I} & -\mathbf{R} \\ & \mathbf{I} \end{bmatrix} \in \mathbb{Z}_q^{(\bar{m}+n\log q) \times (\bar{m}+n\log q)}
$$

2 Inverse transformation is just as simple

$$
\mathbf{T}^{-1} = \begin{bmatrix} \mathbf{I} & +\mathbf{R} \\ & \mathbf{I} \end{bmatrix}
$$

- $\, {\bf 3} \,$ Batch application of ${\bf T}$ (or ${\bf T}^{-1})$ to several inputs can be computed asymptotically faster using fast matrix multiplication algorithms.
- $\mathbf 4$ Both $\mathbf T$ and $\mathbf T^{-1}$ introduce relatively low (in fact, optimal) distorsion because R has small (Gaussian) entries.

1 Linear transformation is easily computable $(\bar{m} \cdot n \log q)$

$$
\mathbf{T} = \begin{bmatrix} \mathbf{I} & -\mathbf{R} \\ & \mathbf{I} \end{bmatrix} \in \mathbb{Z}_q^{(\bar{m}+n\log q) \times (\bar{m}+n\log q)}
$$

2 Inverse transformation is just as simple

$$
\mathbf{T}^{-1} = \begin{bmatrix} \mathbf{I} & +\mathbf{R} \\ & \mathbf{I} \end{bmatrix}
$$

- $\, {\bf 3} \,$ Batch application of ${\bf T}$ (or ${\bf T}^{-1})$ to several inputs can be computed asymptotically faster using fast matrix multiplication algorithms.
- $\mathbf 4$ Both $\mathbf T$ and $\mathbf T^{-1}$ introduce relatively low (in fact, optimal) distorsion because R has small (Gaussian) entries.
- $\bf{5}$ A basis for $\Lambda^\perp(\bf{A})$ is easily computed using \bf{T} , but never needed: \bf{R} serves as a new trapdoor

Conclusions

 \triangleright A new, simpler, more efficient trapdoor notion and construction
Conclusions

- \triangleright A new, simpler, more efficient trapdoor notion and construction
- \blacktriangleright Exposing structure of trapdoor to applications yields further efficiency improvements

Conclusions

- \triangleright A new, simpler, more efficient trapdoor notion and construction
- \blacktriangleright Exposing structure of trapdoor to applications yields further efficiency improvements
- ▶ Key sizes and algorithms for "strong" trapdoors are now practical

Conclusions

- \triangleright A new, simpler, more efficient trapdoor notion and construction
- \blacktriangleright Exposing structure of trapdoor to applications yields further efficiency improvements
- ▶ Key sizes and algorithms for "strong" trapdoors are now practical

Questions?