
Trapdoors for Lattices:
Simpler, Tighter, Faster, Smaller

Daniele Micciancio1 Chris Peikert2

1UC San Diego

2Georgia Tech

April 2012

1 / 16

Lattice-Based Cryptography

N
=
p · q

y =
g
x mod p

m
e mod N

e(ga, gb)

=⇒

Why?

I Simple & efficient: linear, highly parallel operations

I Resist quantum attacks (so far)

I Secure under worst-case hardness assumptions [Ajtai’96,. . .]

I Solve ‘holy grail’ problems like FHE [Gentry’09,. . .]

(Images courtesy xkcd.org) 2 / 16

Lattice-Based Cryptography

N
=
p · q

y =
g
x mod p

m
e mod N

e(ga, gb)

=⇒

Why?

I Simple & efficient: linear, highly parallel operations

I Resist quantum attacks (so far)

I Secure under worst-case hardness assumptions [Ajtai’96,. . .]

I Solve ‘holy grail’ problems like FHE [Gentry’09,. . .]

(Images courtesy xkcd.org) 2 / 16

Lattice-Based Cryptography

N
=
p · q

y =
g
x mod p

m
e mod N

e(ga, gb)

=⇒

Why?

I Simple & efficient: linear, highly parallel operations

I Resist quantum attacks (so far)

I Secure under worst-case hardness assumptions [Ajtai’96,. . .]

I Solve ‘holy grail’ problems like FHE [Gentry’09,. . .]

(Images courtesy xkcd.org) 2 / 16

Point Lattices

b1

b2

A lattice is the set of all integer
linear combinations of (linearly
independent) basis vectors
B = {b1, . . . ,bn} ⊂ Rd:

Λ =

n∑
i=1

bi · Z

= {Bx : x ∈ Zn}

The same lattice has many bases

Λ = {Cx : x ∈ Zn}

Definition (Lattice)

Discrete additive subgroup of Rd

E.g. Λ = {x ∈ Zd : Ax = 0}

3 / 16

Point Lattices

b1

b2

A lattice is the set of all integer
linear combinations of (linearly
independent) basis vectors
B = {b1, . . . ,bn} ⊂ Rd:

Λ =

n∑
i=1

bi · Z = {Bx : x ∈ Zn}

The same lattice has many bases

Λ = {Cx : x ∈ Zn}

Definition (Lattice)

Discrete additive subgroup of Rd

E.g. Λ = {x ∈ Zd : Ax = 0}

3 / 16

Point Lattices

b1

b2

c1

c2

A lattice is the set of all integer
linear combinations of (linearly
independent) basis vectors
B = {b1, . . . ,bn} ⊂ Rd:

Λ =

n∑
i=1

bi · Z = {Bx : x ∈ Zn}

The same lattice has many bases

Λ = {Cx : x ∈ Zn}

Definition (Lattice)

Discrete additive subgroup of Rd

E.g. Λ = {x ∈ Zd : Ax = 0}

3 / 16

Point Lattices

A lattice is the set of all integer
linear combinations of (linearly
independent) basis vectors
B = {b1, . . . ,bn} ⊂ Rd:

Λ =

n∑
i=1

bi · Z = {Bx : x ∈ Zn}

The same lattice has many bases

Λ = {Cx : x ∈ Zn}

Definition (Lattice)

Discrete additive subgroup of Rd

E.g. Λ = {x ∈ Zd : Ax = 0}

3 / 16

Point Lattices: Examples

e1

e2

The simplest lattice in n-dimensional
space is the integer lattice

Λ = Zn

b1

b2

Other lattices are obtained by
applying a linear transformation

Λ = BZn (B ∈ Rd×n)

Remark

All lattices have the same group structure, but different geometry

4 / 16

Point Lattices: Examples

e1

e2

The simplest lattice in n-dimensional
space is the integer lattice

Λ = Zn

b1

b2

Other lattices are obtained by
applying a linear transformation

Λ = BZn (B ∈ Rd×n)

Remark

All lattices have the same group structure, but different geometry

4 / 16

Point Lattices: Examples

e1

e2

The simplest lattice in n-dimensional
space is the integer lattice

Λ = Zn

b1

b2

Other lattices are obtained by
applying a linear transformation

Λ = BZn (B ∈ Rd×n)

Remark

All lattices have the same group structure, but different geometry

4 / 16

Lattice-Based One-Way Functions

I Public key
[
· · · A · · ·

]
∈ Zn×m

q for q = poly(n), m = Ω(n log q).

fA(x) = Ax mod q ∈ Zn
q

(“short” x, surjective)

CRHF if SIS hard [Ajtai’96,. . .]

gA(s, e) = stA + et mod q ∈ Zm
q

(“very short” e, injective)

OWF if LWE hard [Regev’05,P’09]

5 / 16

Lattice-Based One-Way Functions

I Public key
[
· · · A · · ·

]
∈ Zn×m

q for q = poly(n), m = Ω(n log q).

fA(x) = Ax mod q ∈ Zn
q

(“short” x, surjective)

CRHF if SIS hard [Ajtai’96,. . .]

gA(s, e) = stA + et mod q ∈ Zm
q

(“very short” e, injective)

OWF if LWE hard [Regev’05,P’09]

5 / 16

Lattice-Based One-Way Functions

I Public key
[
· · · A · · ·

]
∈ Zn×m

q for q = poly(n), m = Ω(n log q).

fA(x) = Ax mod q ∈ Zn
q

(“short” x, surjective)

CRHF if SIS hard [Ajtai’96,. . .]

gA(s, e) = stA + et mod q ∈ Zm
q

(“very short” e, injective)

OWF if LWE hard [Regev’05,P’09]

5 / 16

Lattice-Based One-Way Functions

I Public key
[
· · · A · · ·

]
∈ Zn×m

q for q = poly(n), m = Ω(n log q).

fA(x) = Ax mod q ∈ Zn
q

(“short” x, surjective)

CRHF if SIS hard [Ajtai’96,. . .]

gA(s, e) = stA + et mod q ∈ Zm
q

(“very short” e, injective)

OWF if LWE hard [Regev’05,P’09]

I Lattice interpretation: Λ⊥(A) = {x ∈ Zm : fA(x) = Ax = 0 mod q}

O

(0, q)

(q, 0)

5 / 16

Lattice-Based One-Way Functions

I Public key
[
· · · A · · ·

]
∈ Zn×m

q for q = poly(n), m = Ω(n log q).

fA(x) = Ax mod q ∈ Zn
q

(“short” x, surjective)

CRHF if SIS hard [Ajtai’96,. . .]

gA(s, e) = stA + et mod q ∈ Zm
q

(“very short” e, injective)

OWF if LWE hard [Regev’05,P’09]

I Lattice interpretation: Λ⊥(A) = {x ∈ Zm : fA(x) = Ax = 0 mod q}

O

(0, q)

(q, 0)

x

5 / 16

Lattice-Based One-Way Functions

I Public key
[
· · · A · · ·

]
∈ Zn×m

q for q = poly(n), m = Ω(n log q).

fA(x) = Ax mod q ∈ Zn
q

(“short” x, surjective)

CRHF if SIS hard [Ajtai’96,. . .]

gA(s, e) = stA + et mod q ∈ Zm
q

(“very short” e, injective)

OWF if LWE hard [Regev’05,P’09]

I Lattice interpretation: Λ⊥(A) = {x ∈ Zm : fA(x) = Ax = 0 mod q}

O

(0, q)

(q, 0)

x

O

(0, q)

(q, 0)

a1

a2

5 / 16

Lattice-Based One-Way Functions

I Public key
[
· · · A · · ·

]
∈ Zn×m

q for q = poly(n), m = Ω(n log q).

fA(x) = Ax mod q ∈ Zn
q

(“short” x, surjective)

CRHF if SIS hard [Ajtai’96,. . .]

gA(s, e) = stA + et mod q ∈ Zm
q

(“very short” e, injective)

OWF if LWE hard [Regev’05,P’09]

I Lattice interpretation: Λ⊥(A) = {x ∈ Zm : fA(x) = Ax = 0 mod q}

O

(0, q)

(q, 0)

x

O

(0, q)

(q, 0)

a1

a2

Ats

e

5 / 16

Lattice-Based One-Way Functions

I Public key
[
· · · A · · ·

]
∈ Zn×m

q for q = poly(n), m = Ω(n log q).

fA(x) = Ax mod q ∈ Zn
q

(“short” x, surjective)

CRHF if SIS hard [Ajtai’96,. . .]

gA(s, e) = stA + et mod q ∈ Zm
q

(“very short” e, injective)

OWF if LWE hard [Regev’05,P’09]

I Remark:
F fA and gA are essentially equivalent functions
F See e.g. “Duality in lattice cryptography” [M’10]
F Main difference: e is even shorter than x
F Notational convention:

Function x/e Injective Surjective

fA short 7 4

gA very short 4 7

I fA, gA in forward direction yield CRHFs, CPA-secure encryption
. . . and not much else.

5 / 16

Lattice-Based One-Way Functions

I Public key
[
· · · A · · ·

]
∈ Zn×m

q for q = poly(n), m = Ω(n log q).

fA(x) = Ax mod q ∈ Zn
q

(“short” x, surjective)

CRHF if SIS hard [Ajtai’96,. . .]

gA(s, e) = stA + et mod q ∈ Zm
q

(“very short” e, injective)

OWF if LWE hard [Regev’05,P’09]

I Remark:
F fA and gA are essentially equivalent functions
F See e.g. “Duality in lattice cryptography” [M’10]
F Main difference: e is even shorter than x
F Notational convention:

Function x/e Injective Surjective

fA short 7 4

gA very short 4 7

I fA, gA in forward direction yield CRHFs, CPA-secure encryption
. . . and not much else.

5 / 16

Trapdoor Inversion
I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x′) = Ax′ mod q:

sample random x← f−1
A (u)

with prob ∝ exp(−‖x‖2/σ2).

Invert
gA(s, e) = stA + et mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of Λ⊥(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 16

Trapdoor Inversion
I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x′) = Ax′ mod q:

sample random x← f−1
A (u)

with prob ∝ exp(−‖x‖2/σ2).

Invert
gA(s, e) = stA + et mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of Λ⊥(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 16

Trapdoor Inversion
I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x′) = Ax′ mod q:

sample random x← f−1
A (u)

with prob ∝ exp(−‖x‖2/σ2).

Invert
gA(s, e) = stA + et mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of Λ⊥(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 16

Trapdoor Inversion
I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x′) = Ax′ mod q:

sample random x← f−1
A (u)

with prob ∝ exp(−‖x‖2/σ2).

Invert
gA(s, e) = stA + et mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of Λ⊥(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 16

Applications of Strong Trapdoors

Applications of f−1, g−1

I “Hash and Sign” signatures in Random oracle (RO) model [GPV’08]

I Standard model (no RO) signatures [CHKP’10,R’10,B’10]

I SM CCA-secure encryption [PW’08,P’09]

I SM (Hierarchical) IBE [GPV’08,CHKP’10,ABB’10a,ABB’10b]

I Many more: OT, NISZK, homom enc/sigs, deniable enc, func enc, . . .
[PVW’08,PV’08,GHV’10,GKV’10,BF’10a,BF’10b,OPW’11,AFV’11,ABVVW’11,. . .]

Some Drawbacks. . .

7 Generating A w/ short basis is complicated and slow [Ajtai’99,AP’09]

7 Known inversion algorithms trade quality for efficiency

tight, iterative, fp looser, parallel, offline

g−1
A [Babai’86] [Babai’86]

f−1
A [Klein’01,GPV’08] [P’10]

7 / 16

Applications of Strong Trapdoors

Applications of f−1, g−1

I “Hash and Sign” signatures in Random oracle (RO) model [GPV’08]

I Standard model (no RO) signatures [CHKP’10,R’10,B’10]

I SM CCA-secure encryption [PW’08,P’09]

I SM (Hierarchical) IBE [GPV’08,CHKP’10,ABB’10a,ABB’10b]

I Many more: OT, NISZK, homom enc/sigs, deniable enc, func enc, . . .
[PVW’08,PV’08,GHV’10,GKV’10,BF’10a,BF’10b,OPW’11,AFV’11,ABVVW’11,. . .]

Some Drawbacks. . .

7 Generating A w/ short basis is complicated and slow [Ajtai’99,AP’09]

7 Known inversion algorithms trade quality for efficiency

tight, iterative, fp looser, parallel, offline

g−1
A [Babai’86] [Babai’86]

f−1
A [Klein’01,GPV’08] [P’10]

7 / 16

Taming the Parameters

n

{[
· · · A · · ·

]
︸ ︷︷ ︸

m

fA(x) = Ax
O

1 Trapdoor construction yields some lattice dim m = Ω(n log q).

2 Basis “quality” ≈ lengths of basis vectors ≈ Gaussian std dev σ.

3 Dimension m, std dev σ =⇒ preimage length β = ‖x‖ ≈ σ
√
m.

4 Choose n, q so that finding β-bounded preimages is hard.

4 Better dimension m & quality σ
=⇒ “win-win-win” in security-keysize-runtime

8 / 16

Taming the Parameters

n

{[
· · · A · · ·

]
︸ ︷︷ ︸

m

fA(x) = Ax
O

1 Trapdoor construction yields some lattice dim m = Ω(n log q).

2 Basis “quality” ≈ lengths of basis vectors ≈ Gaussian std dev σ.

3 Dimension m, std dev σ =⇒ preimage length β = ‖x‖ ≈ σ
√
m.

4 Choose n, q so that finding β-bounded preimages is hard.

4 Better dimension m & quality σ
=⇒ “win-win-win” in security-keysize-runtime

8 / 16

Taming the Parameters

n

{[
· · · A · · ·

]
︸ ︷︷ ︸

m

fA(x) = Ax
O

1 Trapdoor construction yields some lattice dim m = Ω(n log q).

2 Basis “quality” ≈ lengths of basis vectors ≈ Gaussian std dev σ.

3 Dimension m, std dev σ =⇒ preimage length β = ‖x‖ ≈ σ
√
m.

4 Choose n, q so that finding β-bounded preimages is hard.

4 Better dimension m & quality σ
=⇒ “win-win-win” in security-keysize-runtime

8 / 16

Taming the Parameters

n

{[
· · · A · · ·

]
︸ ︷︷ ︸

m

fA(x) = Ax
O

1 Trapdoor construction yields some lattice dim m = Ω(n log q).

2 Basis “quality” ≈ lengths of basis vectors ≈ Gaussian std dev σ.

3 Dimension m, std dev σ =⇒ preimage length β = ‖x‖ ≈ σ
√
m.

4 Choose n, q so that finding β-bounded preimages is hard.

4 Better dimension m & quality σ
=⇒ “win-win-win” in security-keysize-runtime

8 / 16

Taming the Parameters

n

{[
· · · A · · ·

]
︸ ︷︷ ︸

m

fA(x) = Ax
O

1 Trapdoor construction yields some lattice dim m = Ω(n log q).

2 Basis “quality” ≈ lengths of basis vectors ≈ Gaussian std dev σ.

3 Dimension m, std dev σ =⇒ preimage length β = ‖x‖ ≈ σ
√
m.

4 Choose n, q so that finding β-bounded preimages is hard.

4 Better dimension m & quality σ
=⇒ “win-win-win” in security-keysize-runtime

8 / 16

Taming the Parameters

n

{[
· · · A · · ·

]
︸ ︷︷ ︸

m

fA(x) = Ax
O

1 Trapdoor construction yields some lattice dim m = Ω(n log q).

2 Basis “quality” ≈ lengths of basis vectors ≈ Gaussian std dev σ.

3 Dimension m, std dev σ =⇒ preimage length β = ‖x‖ ≈ σ
√
m.

4 Choose n, q so that finding β-bounded preimages is hard.

4 Better dimension m & quality σ
=⇒ “win-win-win” in security-keysize-runtime

8 / 16

Our Contributions

New “strong” trapdoor generation and inversion algorithms:

4 Very simple & fast

F Generation: one matrix mult. No HNF or inverses (cf. [A’99,AP’09])

F Inversion: practical, parallel, & mostly offline

F No more efficiency-vs-quality tradeoff

4 Tighter parameters m and σ

F Asymptotically optimal with small constant factors

F Ex improvement: 32x in dim m, 25x in quality σ ⇒ 67x in keysize

4 New kind of trapdoor — not a basis! (But just as powerful.)

F Half the dimension of a basis ⇒ 4x size improvement

F Delegation: size grows as O(dim), versus O(dim2) [CHKP’10]

4 More efficient applications (beyond “black-box” improvements)

9 / 16

Our Contributions

New “strong” trapdoor generation and inversion algorithms:

4 Very simple & fast

F Generation: one matrix mult. No HNF or inverses (cf. [A’99,AP’09])

F Inversion: practical, parallel, & mostly offline

F No more efficiency-vs-quality tradeoff

4 Tighter parameters m and σ

F Asymptotically optimal with small constant factors

F Ex improvement: 32x in dim m, 25x in quality σ ⇒ 67x in keysize

4 New kind of trapdoor — not a basis! (But just as powerful.)

F Half the dimension of a basis ⇒ 4x size improvement

F Delegation: size grows as O(dim), versus O(dim2) [CHKP’10]

4 More efficient applications (beyond “black-box” improvements)

9 / 16

Our Contributions

New “strong” trapdoor generation and inversion algorithms:

4 Very simple & fast

F Generation: one matrix mult. No HNF or inverses (cf. [A’99,AP’09])

F Inversion: practical, parallel, & mostly offline

F No more efficiency-vs-quality tradeoff

4 Tighter parameters m and σ

F Asymptotically optimal with small constant factors

F Ex improvement: 32x in dim m, 25x in quality σ ⇒ 67x in keysize

4 New kind of trapdoor — not a basis! (But just as powerful.)

F Half the dimension of a basis ⇒ 4x size improvement

F Delegation: size grows as O(dim), versus O(dim2) [CHKP’10]

4 More efficient applications (beyond “black-box” improvements)

9 / 16

Our Contributions

New “strong” trapdoor generation and inversion algorithms:

4 Very simple & fast

F Generation: one matrix mult. No HNF or inverses (cf. [A’99,AP’09])

F Inversion: practical, parallel, & mostly offline

F No more efficiency-vs-quality tradeoff

4 Tighter parameters m and σ

F Asymptotically optimal with small constant factors

F Ex improvement: 32x in dim m, 25x in quality σ ⇒ 67x in keysize

4 New kind of trapdoor — not a basis! (But just as powerful.)

F Half the dimension of a basis ⇒ 4x size improvement

F Delegation: size grows as O(dim), versus O(dim2) [CHKP’10]

4 More efficient applications (beyond “black-box” improvements)

9 / 16

Our Contributions

New “strong” trapdoor generation and inversion algorithms:

4 Very simple & fast

F Generation: one matrix mult. No HNF or inverses (cf. [A’99,AP’09])

F Inversion: practical, parallel, & mostly offline

F No more efficiency-vs-quality tradeoff

4 Tighter parameters m and σ

F Asymptotically optimal with small constant factors

F Ex improvement: 32x in dim m, 25x in quality σ ⇒ 67x in keysize

4 New kind of trapdoor — not a basis! (But just as powerful.)

F Half the dimension of a basis ⇒ 4x size improvement

F Delegation: size grows as O(dim), versus O(dim2) [CHKP’10]

4 More efficient applications (beyond “black-box” improvements)

9 / 16

Concrete Parameter Improvements

Before [AP’09] Now (fast f−1) Improvement

Dim m
slow f−1: > 5n log q 2n log q (

s
≈)

2.5 – log q
fast f−1: > n log2 q n(1 + log q) (

c
≈)

Quality σ
slow f−1: 20

√
n log q

1.6
√
n log q 12.5 – 10

√
log q

fast f−1: 16
√
n log2 q

Example parameters for (ring-based) GPV signatures:

n q δ to break pk size (bits)

Before (fast f−1) 436 232 1.007 ≈ 17× 106

Now 284 224 1.007 ≈ 36× 104

Bottom line: ≈ 45-fold improvement in key size.

10 / 16

Concrete Parameter Improvements

Before [AP’09] Now (fast f−1) Improvement

Dim m
slow f−1: > 5n log q 2n log q (

s
≈)

2.5 – log q
fast f−1: > n log2 q n(1 + log q) (

c
≈)

Quality σ
slow f−1: 20

√
n log q

1.6
√
n log q 12.5 – 10

√
log q

fast f−1: 16
√
n log2 q

Example parameters for (ring-based) GPV signatures:

n q δ to break pk size (bits)

Before (fast f−1) 436 232 1.007 ≈ 17× 106

Now 284 224 1.007 ≈ 36× 104

Bottom line: ≈ 45-fold improvement in key size.

10 / 16

Concrete Parameter Improvements

Before [AP’09] Now (fast f−1) Improvement

Dim m
slow f−1: > 5n log q 2n log q (

s
≈)

2.5 – log q
fast f−1: > n log2 q n(1 + log q) (

c
≈)

Quality σ
slow f−1: 20

√
n log q

1.6
√
n log q 12.5 – 10

√
log q

fast f−1: 16
√
n log2 q

Example parameters for (ring-based) GPV signatures:

n q δ to break pk size (bits)

Before (fast f−1) 436 232 1.007 ≈ 17× 106

Now 284 224 1.007 ≈ 36× 104

Bottom line: ≈ 45-fold improvement in key size.
10 / 16

Overview of Methods

1 Design a fixed, public lattice defined by “gadget” G.
Give fast, parallel, offline algorithms for f−1

G , g−1
G .

2 Randomize G↔ A via a “nice” unimodular transformation.
(The transformation is the trapdoor!)

3 Reduce f−1
A , g−1

A to f−1
G , g−1

G plus pre-/post-processing.

4 Problem: Transformation distorts noise.

Solution: add ’perturbation’ during pre-/post-processing [P’10]

G

11 / 16

Overview of Methods

1 Design a fixed, public lattice defined by “gadget” G.
Give fast, parallel, offline algorithms for f−1

G , g−1
G .

2 Randomize G↔ A via a “nice” unimodular transformation.
(The transformation is the trapdoor!)

3 Reduce f−1
A , g−1

A to f−1
G , g−1

G plus pre-/post-processing.

4 Problem: Transformation distorts noise.

Solution: add ’perturbation’ during pre-/post-processing [P’10]

G A

11 / 16

Overview of Methods

1 Design a fixed, public lattice defined by “gadget” G.
Give fast, parallel, offline algorithms for f−1

G , g−1
G .

2 Randomize G↔ A via a “nice” unimodular transformation.
(The transformation is the trapdoor!)

3 Reduce f−1
A , g−1

A to f−1
G , g−1

G plus pre-/post-processing.

4 Problem: Transformation distorts noise.

Solution: add ’perturbation’ during pre-/post-processing [P’10]

G A

11 / 16

Overview of Methods

1 Design a fixed, public lattice defined by “gadget” G.
Give fast, parallel, offline algorithms for f−1

G , g−1
G .

2 Randomize G↔ A via a “nice” unimodular transformation.
(The transformation is the trapdoor!)

3 Reduce f−1
A , g−1

A to f−1
G , g−1

G plus pre-/post-processing.

4 Problem: Transformation distorts noise.

Solution: add ’perturbation’ during pre-/post-processing [P’10]

G A

11 / 16

Overview of Methods

1 Design a fixed, public lattice defined by “gadget” G.
Give fast, parallel, offline algorithms for f−1

G , g−1
G .

2 Randomize G↔ A via a “nice” unimodular transformation.
(The transformation is the trapdoor!)

3 Reduce f−1
A , g−1

A to f−1
G , g−1

G plus pre-/post-processing.

4 Problem: Transformation distorts noise.

Solution: add ’perturbation’ during pre-/post-processing [P’10]

G A

11 / 16

Overview of Methods

1 Design a fixed, public lattice defined by “gadget” G.
Give fast, parallel, offline algorithms for f−1

G , g−1
G .

2 Randomize G↔ A via a “nice” unimodular transformation.
(The transformation is the trapdoor!)

3 Reduce f−1
A , g−1

A to f−1
G , g−1

G plus pre-/post-processing.

4 Problem: Transformation distorts noise.

Solution: add ’perturbation’ during pre-/post-processing [P’10]

G A

11 / 16

Overview of Methods

1 Design a fixed, public lattice defined by “gadget” G.
Give fast, parallel, offline algorithms for f−1

G , g−1
G .

2 Randomize G↔ A via a “nice” unimodular transformation.
(The transformation is the trapdoor!)

3 Reduce f−1
A , g−1

A to f−1
G , g−1

G plus pre-/post-processing.

4 Problem: Transformation distorts noise.

Solution: add ’perturbation’ during pre-/post-processing [P’10]

G A

11 / 16

Overview of Methods

1 Design a fixed, public lattice defined by “gadget” G.
Give fast, parallel, offline algorithms for f−1

G , g−1
G .

2 Randomize G↔ A via a “nice” unimodular transformation.
(The transformation is the trapdoor!)

3 Reduce f−1
A , g−1

A to f−1
G , g−1

G plus pre-/post-processing.

4 Problem: Transformation distorts noise.
Solution: add ’perturbation’ during pre-/post-processing [P’10]

G A

11 / 16

Gadget G construction: the primitive vector g

I Let q = 2k. Define lattice Λ⊥(g) by 1× k “parity check” vector

g :=
[
1 2 4 · · · 2k−1

]
∈ Z1×k

q .

I Λ⊥(g) has a short basis S =

2
−1 2

−1
. . .

2
−1 2

 ∈ Zk×k

almost orthogonal (S̃ = 2 · Ik), sparse (2k − 1 nonzero entries), and
low dimensional (k = log q = O(log n))

I fg, gg are efficiently invertible, either by optimized versions of
[Babai’86,Klein’01,GPV’08], or other specialized algorithms.

Inverting f on very small inputs

Find x ∈ {0, 1}k such that fg(x) = g · x = y mod q.
Solution: set x to the binary representation of y

12 / 16

Gadget G construction: the primitive vector g

I Let q = 2k. Define lattice Λ⊥(g) by 1× k “parity check” vector

g :=
[
1 2 4 · · · 2k−1

]
∈ Z1×k

q .

I Λ⊥(g) has a short basis S =

2
−1 2

−1
. . .

2
−1 2

 ∈ Zk×k

almost orthogonal (S̃ = 2 · Ik), sparse (2k − 1 nonzero entries), and
low dimensional (k = log q = O(log n))

I fg, gg are efficiently invertible, either by optimized versions of
[Babai’86,Klein’01,GPV’08], or other specialized algorithms.

Inverting f on very small inputs

Find x ∈ {0, 1}k such that fg(x) = g · x = y mod q.
Solution: set x to the binary representation of y

12 / 16

Gadget G construction: the primitive vector g

I Let q = 2k. Define lattice Λ⊥(g) by 1× k “parity check” vector

g :=
[
1 2 4 · · · 2k−1

]
∈ Z1×k

q .

I Λ⊥(g) has a short basis S =

2
−1 2

−1
. . .

2
−1 2

 ∈ Zk×k

almost orthogonal (S̃ = 2 · Ik),

sparse (2k − 1 nonzero entries), and
low dimensional (k = log q = O(log n))

I fg, gg are efficiently invertible, either by optimized versions of
[Babai’86,Klein’01,GPV’08], or other specialized algorithms.

Inverting f on very small inputs

Find x ∈ {0, 1}k such that fg(x) = g · x = y mod q.
Solution: set x to the binary representation of y

12 / 16

Gadget G construction: the primitive vector g

I Let q = 2k. Define lattice Λ⊥(g) by 1× k “parity check” vector

g :=
[
1 2 4 · · · 2k−1

]
∈ Z1×k

q .

I Λ⊥(g) has a short basis S =

2
−1 2

−1
. . .

2
−1 2

 ∈ Zk×k

almost orthogonal (S̃ = 2 · Ik), sparse (2k − 1 nonzero entries),

and
low dimensional (k = log q = O(log n))

I fg, gg are efficiently invertible, either by optimized versions of
[Babai’86,Klein’01,GPV’08], or other specialized algorithms.

Inverting f on very small inputs

Find x ∈ {0, 1}k such that fg(x) = g · x = y mod q.
Solution: set x to the binary representation of y

12 / 16

Gadget G construction: the primitive vector g

I Let q = 2k. Define lattice Λ⊥(g) by 1× k “parity check” vector

g :=
[
1 2 4 · · · 2k−1

]
∈ Z1×k

q .

I Λ⊥(g) has a short basis S =

2
−1 2

−1
. . .

2
−1 2

 ∈ Zk×k

almost orthogonal (S̃ = 2 · Ik), sparse (2k − 1 nonzero entries), and
low dimensional (k = log q = O(log n))

I fg, gg are efficiently invertible, either by optimized versions of
[Babai’86,Klein’01,GPV’08], or other specialized algorithms.

Inverting f on very small inputs

Find x ∈ {0, 1}k such that fg(x) = g · x = y mod q.

Solution: set x to the binary representation of y

12 / 16

Gadget G construction: the primitive vector g

I Let q = 2k. Define lattice Λ⊥(g) by 1× k “parity check” vector

g :=
[
1 2 4 · · · 2k−1

]
∈ Z1×k

q .

I Λ⊥(g) has a short basis S =

2
−1 2

−1
. . .

2
−1 2

 ∈ Zk×k

almost orthogonal (S̃ = 2 · Ik), sparse (2k − 1 nonzero entries), and
low dimensional (k = log q = O(log n))

I fg, gg are efficiently invertible, either by optimized versions of
[Babai’86,Klein’01,GPV’08], or other specialized algorithms.

Inverting f on very small inputs

Find x ∈ {0, 1}k such that fg(x) = g · x = y mod q.

Solution: set x to the binary representation of y

12 / 16

Gadget G construction: the primitive vector g

I Let q = 2k. Define lattice Λ⊥(g) by 1× k “parity check” vector

g :=
[
1 2 4 · · · 2k−1

]
∈ Z1×k

q .

I Λ⊥(g) has a short basis S =

2
−1 2

−1
. . .

2
−1 2

 ∈ Zk×k

almost orthogonal (S̃ = 2 · Ik), sparse (2k − 1 nonzero entries), and
low dimensional (k = log q = O(log n))

I fg, gg are efficiently invertible, either by optimized versions of
[Babai’86,Klein’01,GPV’08], or other specialized algorithms.

Inverting f on very small inputs

Find x ∈ {0, 1}k such that fg(x) = g · x = y mod q.

Solution: set x to the binary representation of y

12 / 16

Gadget G construction: the primitive vector g

I Let q = 2k. Define lattice Λ⊥(g) by 1× k “parity check” vector

g :=
[
1 2 4 · · · 2k−1

]
∈ Z1×k

q .

I Λ⊥(g) has a short basis S =

2
−1 2

−1
. . .

2
−1 2

 ∈ Zk×k

almost orthogonal (S̃ = 2 · Ik), sparse (2k − 1 nonzero entries), and
low dimensional (k = log q = O(log n))

I fg, gg are efficiently invertible, either by optimized versions of
[Babai’86,Klein’01,GPV’08], or other specialized algorithms.

Inverting f on very small inputs

Find x ∈ {0, 1}k such that fg(x) = g · x = y mod q.
Solution: set x to the binary representation of y

12 / 16

Gadget G construction: from g to G

I Define G = In ⊗ g =

· · ·g · · ·

· · ·g · · ·
. . .

· · ·g · · ·

 ∈ Zn×nk
q .

I Now f−1
G , g−1

G reduce to n parallel calls to f−1
g , g−1

g .

I Running time: almost linear in n, and trivially parallelizable up to n
processors.

I The lattice Λ⊥(G) has short basis

S⊕n = In ⊗ S =

· · ·S · · ·

· · ·S · · ·
. . .

· · ·S · · ·

 ∈ Zn×nk
q

almost orthogonal (S̃⊕n = 2 · Ikn), and
sparse (< 2kn nonzero entries).

13 / 16

Gadget G construction: from g to G

I Define G = In ⊗ g =

· · ·g · · ·

· · ·g · · ·
. . .

· · ·g · · ·

 ∈ Zn×nk
q .

I Now f−1
G , g−1

G reduce to n parallel calls to f−1
g , g−1

g .

I Running time: almost linear in n, and trivially parallelizable up to n
processors.

I The lattice Λ⊥(G) has short basis

S⊕n = In ⊗ S =

· · ·S · · ·

· · ·S · · ·
. . .

· · ·S · · ·

 ∈ Zn×nk
q

almost orthogonal (S̃⊕n = 2 · Ikn), and
sparse (< 2kn nonzero entries).

13 / 16

Gadget G construction: from g to G

I Define G = In ⊗ g =

· · ·g · · ·

· · ·g · · ·
. . .

· · ·g · · ·

 ∈ Zn×nk
q .

I Now f−1
G , g−1

G reduce to n parallel calls to f−1
g , g−1

g .

I Running time: almost linear in n, and trivially parallelizable up to n
processors.

I The lattice Λ⊥(G) has short basis

S⊕n = In ⊗ S =

· · ·S · · ·

· · ·S · · ·
. . .

· · ·S · · ·

 ∈ Zn×nk
q

almost orthogonal (S̃⊕n = 2 · Ikn), and
sparse (< 2kn nonzero entries).

13 / 16

Gadget G construction: from g to G

I Define G = In ⊗ g =

· · ·g · · ·

· · ·g · · ·
. . .

· · ·g · · ·

 ∈ Zn×nk
q .

I Now f−1
G , g−1

G reduce to n parallel calls to f−1
g , g−1

g .

I Running time: almost linear in n, and trivially parallelizable up to n
processors.

I The lattice Λ⊥(G) has short basis

S⊕n = In ⊗ S =

· · ·S · · ·

· · ·S · · ·
. . .

· · ·S · · ·

 ∈ Zn×nk
q

almost orthogonal (S̃⊕n = 2 · Ikn), and
sparse (< 2kn nonzero entries).

13 / 16

Gadget G construction: from g to G

I Define G = In ⊗ g =

· · ·g · · ·

· · ·g · · ·
. . .

· · ·g · · ·

 ∈ Zn×nk
q .

I Now f−1
G , g−1

G reduce to n parallel calls to f−1
g , g−1

g .

I Running time: almost linear in n, and trivially parallelizable up to n
processors.

I The lattice Λ⊥(G) has short basis

S⊕n = In ⊗ S =

· · ·S · · ·

· · ·S · · ·
. . .

· · ·S · · ·

 ∈ Zn×nk
q

almost orthogonal (S̃⊕n = 2 · Ikn), and
sparse (< 2kn nonzero entries).

13 / 16

Randomized Trasformation G↔ A

1 Define semi-random [Ā | G] for uniform (universal) Ā ∈ Zn×m̄
q .

(Computing f−1, g−1 easily reduce to f−1
G , g−1

G .)

2 Choose “short” (Gaussian) R← Zm̄×n log q and let

A := [Ā | G]

[
I −R

I

]
︸ ︷︷ ︸
unimodular

= [Ā | G− ĀR].

F A is uniform if [Ā | ĀR] is: leftover hash lemma for m̄ ≈ n log q.

With G = 0, we get Ajtai’s original method for constructing A with a
“weak” trapdoor of ≥ 1 short vector (but not a full basis).

F [I | Ā | −(ĀR1 + R2)] is pseudorandom (under LWE) for m̄ = n.

14 / 16

Randomized Trasformation G↔ A

1 Define semi-random [Ā | G] for uniform (universal) Ā ∈ Zn×m̄
q .

(Computing f−1, g−1 easily reduce to f−1
G , g−1

G .)

2 Choose “short” (Gaussian) R← Zm̄×n log q and let

A := [Ā | G]

[
I −R

I

]
︸ ︷︷ ︸
unimodular

= [Ā | G− ĀR].

F A is uniform if [Ā | ĀR] is: leftover hash lemma for m̄ ≈ n log q.

With G = 0, we get Ajtai’s original method for constructing A with a
“weak” trapdoor of ≥ 1 short vector (but not a full basis).

F [I | Ā | −(ĀR1 + R2)] is pseudorandom (under LWE) for m̄ = n.

14 / 16

Randomized Trasformation G↔ A

1 Define semi-random [Ā | G] for uniform (universal) Ā ∈ Zn×m̄
q .

(Computing f−1, g−1 easily reduce to f−1
G , g−1

G .)

2 Choose “short” (Gaussian) R← Zm̄×n log q and let

A := [Ā | G]

[
I −R

I

]
︸ ︷︷ ︸
unimodular

= [Ā | G− ĀR].

F A is uniform if [Ā | ĀR] is: leftover hash lemma for m̄ ≈ n log q.

With G = 0, we get Ajtai’s original method for constructing A with a
“weak” trapdoor of ≥ 1 short vector (but not a full basis).

F [I | Ā | −(ĀR1 + R2)] is pseudorandom (under LWE) for m̄ = n.

14 / 16

Randomized Trasformation G↔ A

1 Define semi-random [Ā | G] for uniform (universal) Ā ∈ Zn×m̄
q .

(Computing f−1, g−1 easily reduce to f−1
G , g−1

G .)

2 Choose “short” (Gaussian) R← Zm̄×n log q and let

A := [Ā | G]

[
I −R

I

]
︸ ︷︷ ︸
unimodular

= [Ā | G− ĀR].

F A is uniform if [Ā | ĀR] is: leftover hash lemma for m̄ ≈ n log q.

With G = 0, we get Ajtai’s original method for constructing A with a
“weak” trapdoor of ≥ 1 short vector (but not a full basis).

F [I | Ā | −(ĀR1 + R2)] is pseudorandom (under LWE) for m̄ = n.

14 / 16

Randomized Trasformation G↔ A

1 Define semi-random [Ā | G] for uniform (universal) Ā ∈ Zn×m̄
q .

(Computing f−1, g−1 easily reduce to f−1
G , g−1

G .)

2 Choose “short” (Gaussian) R← Zm̄×n log q and let

A := [Ā | G]

[
I −R

I

]
︸ ︷︷ ︸
unimodular

= [Ā | G− ĀR].

F A is uniform if [Ā | ĀR] is: leftover hash lemma for m̄ ≈ n log q.

With G = 0, we get Ajtai’s original method for constructing A with a
“weak” trapdoor of ≥ 1 short vector (but not a full basis).

F [I | Ā | −(ĀR1 + R2)] is pseudorandom (under LWE) for m̄ = n.

14 / 16

Randomized Trasformation G↔ A: Efficiency

1 Linear transformation is easily computable (m̄ · n log q)

T =

[
I −R

I

]
∈ Z(m̄+n log q)×(m̄+n log q)

q

2 Inverse transformation is just as simple

T−1 =

[
I +R

I

]
3 Batch application of T (or T−1) to several inputs can be computed

asymptotically faster using fast matrix multiplication algorithms.

4 Both T and T−1 introduce relatively low (in fact, optimal) distorsion
because R has small (Gaussian) entries.

5 A basis for Λ⊥(A) is easily computed using T, but never needed: R
serves as a new trapdoor

15 / 16

Randomized Trasformation G↔ A: Efficiency

1 Linear transformation is easily computable (m̄ · n log q)

T =

[
I −R

I

]
∈ Z(m̄+n log q)×(m̄+n log q)

q

2 Inverse transformation is just as simple

T−1 =

[
I +R

I

]

3 Batch application of T (or T−1) to several inputs can be computed
asymptotically faster using fast matrix multiplication algorithms.

4 Both T and T−1 introduce relatively low (in fact, optimal) distorsion
because R has small (Gaussian) entries.

5 A basis for Λ⊥(A) is easily computed using T, but never needed: R
serves as a new trapdoor

15 / 16

Randomized Trasformation G↔ A: Efficiency

1 Linear transformation is easily computable (m̄ · n log q)

T =

[
I −R

I

]
∈ Z(m̄+n log q)×(m̄+n log q)

q

2 Inverse transformation is just as simple

T−1 =

[
I +R

I

]
3 Batch application of T (or T−1) to several inputs can be computed

asymptotically faster using fast matrix multiplication algorithms.

4 Both T and T−1 introduce relatively low (in fact, optimal) distorsion
because R has small (Gaussian) entries.

5 A basis for Λ⊥(A) is easily computed using T, but never needed: R
serves as a new trapdoor

15 / 16

Randomized Trasformation G↔ A: Efficiency

1 Linear transformation is easily computable (m̄ · n log q)

T =

[
I −R

I

]
∈ Z(m̄+n log q)×(m̄+n log q)

q

2 Inverse transformation is just as simple

T−1 =

[
I +R

I

]
3 Batch application of T (or T−1) to several inputs can be computed

asymptotically faster using fast matrix multiplication algorithms.

4 Both T and T−1 introduce relatively low (in fact, optimal) distorsion
because R has small (Gaussian) entries.

5 A basis for Λ⊥(A) is easily computed using T, but never needed: R
serves as a new trapdoor

15 / 16

Randomized Trasformation G↔ A: Efficiency

1 Linear transformation is easily computable (m̄ · n log q)

T =

[
I −R

I

]
∈ Z(m̄+n log q)×(m̄+n log q)

q

2 Inverse transformation is just as simple

T−1 =

[
I +R

I

]
3 Batch application of T (or T−1) to several inputs can be computed

asymptotically faster using fast matrix multiplication algorithms.

4 Both T and T−1 introduce relatively low (in fact, optimal) distorsion
because R has small (Gaussian) entries.

5 A basis for Λ⊥(A) is easily computed using T, but never needed: R
serves as a new trapdoor

15 / 16

Conclusions

I A new, simpler, more efficient trapdoor notion and construction

I Exposing structure of trapdoor to applications yields further efficiency
improvements

I Key sizes and algorithms for “strong” trapdoors are now practical

Questions?

16 / 16

Conclusions

I A new, simpler, more efficient trapdoor notion and construction

I Exposing structure of trapdoor to applications yields further efficiency
improvements

I Key sizes and algorithms for “strong” trapdoors are now practical

Questions?

16 / 16

Conclusions

I A new, simpler, more efficient trapdoor notion and construction

I Exposing structure of trapdoor to applications yields further efficiency
improvements

I Key sizes and algorithms for “strong” trapdoors are now practical

Questions?

16 / 16

Conclusions

I A new, simpler, more efficient trapdoor notion and construction

I Exposing structure of trapdoor to applications yields further efficiency
improvements

I Key sizes and algorithms for “strong” trapdoors are now practical

Questions?

16 / 16

