Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller

Daniele Micciancio¹ Chris Peikert²

¹UC San Diego

²Georgia Tech

April 2012

Lattice-Based Cryptography

Lattice-Based Cryptography

Lattice-Based Cryptography

Why?

- Simple & efficient: linear, highly parallel operations
- Resist quantum attacks (so far)
- Secure under worst-case hardness assumptions [Ajtai'96,...]
- Solve 'holy grail' problems like FHE [Gentry'09,...]

A lattice is the set of all integer linear combinations of (linearly independent) basis vectors $\mathbf{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n} \subset \mathbb{R}^d$:

$$\Lambda = \sum_{i=1}^{n} \mathbf{b}_i \cdot \mathbb{Z}$$

A lattice is the set of all integer linear combinations of (linearly independent) basis vectors $\mathbf{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n} \subset \mathbb{R}^d$:

$$\Lambda = \sum_{i=1}^{n} \mathbf{b}_i \cdot \mathbb{Z} = \{ \mathbf{B}\mathbf{x} \colon \mathbf{x} \in \mathbb{Z}^n \}$$

A lattice is the set of all integer linear combinations of (linearly independent) basis vectors $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\} \subset \mathbb{R}^d:$

$$\Lambda = \sum_{i=1}^n \mathbf{b}_i \cdot \mathbb{Z} = \{ \mathbf{B}\mathbf{x} \colon \mathbf{x} \in \mathbb{Z}^n \}$$

The same lattice has many bases

$$\Lambda = \{ \mathbf{C}\mathbf{x} \colon \mathbf{x} \in \mathbb{Z}^n \}$$

A lattice is the set of all integer linear combinations of (linearly independent) basis vectors $\mathbf{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n} \subset \mathbb{R}^d$:

$$\Lambda = \sum_{i=1}^{n} \mathbf{b}_i \cdot \mathbb{Z} = \{ \mathbf{B}\mathbf{x} \colon \mathbf{x} \in \mathbb{Z}^n \}$$

The same lattice has many bases

$$\Lambda = \{ \mathbf{C}\mathbf{x} \colon \mathbf{x} \in \mathbb{Z}^n \}$$

Definition (Lattice)

Discrete additive subgroup of \mathbb{R}^d E.g. $\Lambda = \{ \mathbf{x} \in \mathbb{Z}^d : \mathbf{A}\mathbf{x} = \mathbf{0} \}$

Point Lattices: Examples

The simplest lattice in n-dimensional space is the integer lattice

$$\Lambda = \mathbb{Z}^n$$

Point Lattices: Examples

The simplest lattice in n-dimensional space is the integer lattice

$$\Lambda = \mathbb{Z}^n$$

Other lattices are obtained by applying a linear transformation

$$\Lambda = \mathbf{B}\mathbb{Z}^n \qquad (\mathbf{B} \in \mathbb{R}^{d \times n})$$

Point Lattices: Examples

The simplest lattice in *n*-dimensional space is the integer lattice

 $\Lambda = \mathbb{Z}^n$

$$\mathbf{b}_1 / \mathbf{b}_2$$

Other lattices are obtained by applying a linear transformation

$$\Lambda = \mathbf{B}\mathbb{Z}^n \qquad (\mathbf{B} \in \mathbb{R}^{d \times n})$$

Remark

All lattices have the same group structure, but different geometry

• Public key
$$\left[\cdots \mathbf{A} \cdots\right] \in \mathbb{Z}_q^{n \times m}$$
 for $q = \mathsf{poly}(n)$, $m = \Omega(n \log q)$.

• Public key
$$\left[\cdots \mathbf{A} \cdots\right] \in \mathbb{Z}_q^{n \times m}$$
 for $q = \mathsf{poly}(n)$, $m = \Omega(n \log q)$.

 $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \mod q \in \mathbb{Z}_q^n$ ("short" \mathbf{x} , surjective)

CRHF if SIS hard [Ajtai'96,...]

• Public key
$$\left[\cdots \mathbf{A} \cdots\right] \in \mathbb{Z}_q^{n \times m}$$
 for $q = \operatorname{poly}(n), m = \Omega(n \log q).$

 $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \mod q \in \mathbb{Z}_q^n$ ("short" \mathbf{x} , surjective) $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^{t} \mathbf{A} + \mathbf{e}^{t} \mod q \in \mathbb{Z}_{q}^{m}$ ("very short" **e**, injective)

CRHF if SIS hard [Ajtai'96,...]

OWF if LWE hard [Regev'05,P'09]

• Public key
$$\left[\cdots \mathbf{A} \cdots\right] \in \mathbb{Z}_q^{n \times m}$$
 for $q = \operatorname{poly}(n)$, $m = \Omega(n \log q)$.

 $\begin{aligned} f_{\mathbf{A}}(\mathbf{x}) &= \mathbf{A}\mathbf{x} \bmod q \in \mathbb{Z}_q^n \\ (\text{"short" } \mathbf{x}, \text{ surjective}) \end{aligned} \quad \begin{vmatrix} g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) &= \mathbf{s}^t \mathbf{A} + \mathbf{e}^t \bmod q \in \mathbb{Z}_q^m \\ (\text{"very short" } \mathbf{e}, \text{ injective}) \end{aligned}$

CRHF if SIS hard [Ajtai'96,...]

OWF if LWE hard [Regev'05,P'09]

• Public key
$$\left[\cdots \mathbf{A} \cdots\right] \in \mathbb{Z}_q^{n \times m}$$
 for $q = \operatorname{poly}(n)$, $m = \Omega(n \log q)$.

CRHF if SIS hard [Ajtai'96,...]

OWF if LWE hard [Regev'05,P'09]

• Public key
$$\left[\cdots \mathbf{A} \cdots\right] \in \mathbb{Z}_q^{n \times m}$$
 for $q = \operatorname{poly}(n)$, $m = \Omega(n \log q)$.

CRHF if SIS hard [Ajtai'96,...]

OWF if LWE hard [Regev'05,P'09]

• Public key
$$\left[\cdots \mathbf{A} \cdots\right] \in \mathbb{Z}_q^{n \times m}$$
 for $q = \operatorname{poly}(n)$, $m = \Omega(n \log q)$.

CRHF if SIS hard [Ajtai'96,...]

OWF if LWE hard [Regev'05,P'09]

• Public key
$$\left[\cdots \mathbf{A} \cdots\right] \in \mathbb{Z}_q^{n \times m}$$
 for $q = \operatorname{poly}(n)$, $m = \Omega(n \log q)$.

 $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \mod q \in \mathbb{Z}_q^n$ ("short" \mathbf{x} , surjective) $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^{t} \mathbf{A} + \mathbf{e}^{t} \mod q \in \mathbb{Z}_{q}^{m}$ ("very short" **e**, injective)

CRHF if SIS hard [Ajtai'96,...]

OWF if LWE hard [Regev'05,P'09]

Remark:

- \star $f_{\mathbf{A}}$ and $g_{\mathbf{A}}$ are essentially equivalent functions
- ★ See e.g. "Duality in lattice cryptography" [M'10]
- ★ Main difference: e is even shorter than x
- ★ Notational convention:

Function	x/e	Injective	Surjective
$f_{\mathbf{A}}$	short	×	 ✓
$g_{\mathbf{A}}$	very short	~	×

• Public key
$$\left[\cdots \mathbf{A} \cdots\right] \in \mathbb{Z}_q^{n \times m}$$
 for $q = \operatorname{poly}(n)$, $m = \Omega(n \log q)$.

 $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \mod q \in \mathbb{Z}_q^n$ ("short" \mathbf{x} , surjective) $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t \mod q \in \mathbb{Z}_q^m$ ("very short" \mathbf{e} , injective)

CRHF if SIS hard [Ajtai'96,...]

Remark:

- \star $f_{\mathbf{A}}$ and $g_{\mathbf{A}}$ are essentially equivalent functions
- ★ See e.g. "Duality in lattice cryptography" [M'10]
- ★ Main difference: e is even shorter than x
- * Notational convention:

Function	\mathbf{x}/\mathbf{e}	Injective	Surjective
$f_{\mathbf{A}}$	short	×	~
$g_{\mathbf{A}}$	very short	>	×

*f*_A, *g*_A in forward direction yield CRHFs, CPA-secure encryption ...and not much else.

• Many cryptographic applications need to invert f_A and/or g_A .

• Many cryptographic applications need to invert f_A and/or g_A .

Invert $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^{t}\mathbf{A} + \mathbf{e}^{t} \mod q$: find the unique preimage \mathbf{s} (equivalently, \mathbf{e})

Many cryptographic applications need to invert f_A and/or g_A.

Invert $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}') = \mathbf{A}\mathbf{x}' \mod q$:

sample random $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$ with prob $\propto \exp(-\|\mathbf{x}\|^2/\sigma^2)$. Invert $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^{t}\mathbf{A} + \mathbf{e}^{t} \mod q$: find the unique preimage s (equivalently, e)

• Many cryptographic applications need to invert f_A and/or g_A .

Invert $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}') = \mathbf{A}\mathbf{x}' \mod q$: sample random $\mathbf{x} \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$ with prob $\propto \exp(-\|\mathbf{x}\|^2/\sigma^2)$. Invert $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^{t}\mathbf{A} + \mathbf{e}^{t} \mod q$: find the unique preimage \mathbf{s} (equivalently, \mathbf{e})

• How? Use a "strong trapdoor" for A: a short basis of $\Lambda^{\perp}(A)$ [Babai'86,GGH'97,Klein'01,GPV'08,P'10]

Applications of Strong Trapdoors

Applications of f^{-1} , g^{-1}

- "Hash and Sign" signatures in Random oracle (RO) model [GPV'08]
- Standard model (no RO) signatures [CHKP'10,R'10,B'10]
- SM CCA-secure encryption [PW'08,P'09]
- SM (Hierarchical) IBE [GPV'08,CHKP'10,ABB'10a,ABB'10b]
- Many more: OT, NISZK, homom enc/sigs, deniable enc, func enc, ... [PVW'08,PV'08,GHV'10,GKV'10,BF'10a,BF'10b,OPW'11,AFV'11,ABVVW'11,...]

Applications of Strong Trapdoors

Applications of f^{-1} , g^{-1}

- "Hash and Sign" signatures in Random oracle (RO) model [GPV'08]
- Standard model (no RO) signatures [CHKP'10,R'10,B'10]
- SM CCA-secure encryption [PW'08,P'09]
- SM (Hierarchical) IBE [GPV'08,CHKP'10,ABB'10a,ABB'10b]
- Many more: OT, NISZK, homom enc/sigs, deniable enc, func enc, ... [PVW'08,PV'08,GHV'10,GKV'10,BF'10a,BF'10b,OPW'11,AFV'11,ABVVW'11,...]

Some Drawbacks...

- ✗ Generating A w∕ short basis is complicated and slow [Ajtai'99,AP'09]
- Known inversion algorithms trade quality for efficiency

	tight, iterative, fp	looser, parallel, offline
$g_{\mathbf{A}}^{-1}$	[Babai'86]	[Babai'86]
$f_{\mathbf{A}}^{-1}$	[Klein'01,GPV'08]	[P'10]

1 Trapdoor construction yields some lattice dim $m = \Omega(n \log q)$.

1 Trapdoor construction yields some lattice dim $m = \Omega(n \log q)$.

2 Basis "quality" \approx lengths of basis vectors \approx Gaussian std dev σ .

1 Trapdoor construction yields some lattice dim $m = \Omega(n \log q)$.

- 2 Basis "quality" \approx lengths of basis vectors \approx Gaussian std dev σ .
- **3** Dimension *m*, std dev $\sigma \implies$ preimage length $\beta = \|\mathbf{x}\| \approx \sigma \sqrt{m}$.

1 Trapdoor construction yields some lattice dim $m = \Omega(n \log q)$.

- 2 Basis "quality" \approx lengths of basis vectors \approx Gaussian std dev σ .
- **3** Dimension m, std dev $\sigma \implies$ preimage length $\beta = \|\mathbf{x}\| \approx \sigma \sqrt{m}$.
- **4** Choose n, q so that finding β -bounded preimages is hard.

- **1** Trapdoor construction yields some lattice dim $m = \Omega(n \log q)$.
- 2 Basis "quality" \approx lengths of basis vectors \approx Gaussian std dev σ .
- **3** Dimension m, std dev $\sigma \implies$ preimage length $\beta = \|\mathbf{x}\| \approx \sigma \sqrt{m}$.
- **4** Choose n, q so that finding β -bounded preimages is hard.
- \checkmark Better dimension m & quality σ

 \implies "win-win-win" in security-keysize-runtime

- ✓ Very simple & fast
 - * Generation: one matrix mult. No HNF or inverses (cf. [A'99,AP'09])
 - * Inversion: practical, parallel, & mostly offline
 - ★ No more efficiency-vs-quality tradeoff

- ✓ Very simple & fast
 - ★ Generation: one matrix mult. No HNF or inverses (cf. [A'99,AP'09])
 - * Inversion: practical, parallel, & mostly offline
 - * No more efficiency-vs-quality tradeoff
- \checkmark Tighter parameters m and σ
 - Asymptotically optimal with small constant factors
 - ★ Ex improvement: 32x in dim m, 25x in quality $\sigma \Rightarrow$ 67x in keysize

- ✓ Very simple & fast
 - ★ Generation: one matrix mult. No HNF or inverses (cf. [A'99,AP'09])
 - * Inversion: practical, parallel, & mostly offline
 - * No more efficiency-vs-quality tradeoff
- \checkmark Tighter parameters m and σ
 - ★ Asymptotically optimal with small constant factors
 - $\star\,$ Ex improvement: 32x in dim m, 25x in quality σ \Rightarrow 67x in keysize
- New kind of trapdoor not a basis! (But just as powerful.)
 - * Half the dimension of a basis \Rightarrow 4x size improvement
 - * Delegation: size grows as O(dim), versus $O(dim^2)$ [CHKP'10]
Our Contributions

New "strong" trapdoor generation and inversion algorithms:

- ✓ Very simple & fast
 - ★ Generation: one matrix mult. No HNF or inverses (cf. [A'99,AP'09])
 - * Inversion: practical, parallel, & mostly offline
 - * No more efficiency-vs-quality tradeoff
- \checkmark Tighter parameters m and σ
 - ★ Asymptotically optimal with small constant factors
 - $\star\,$ Ex improvement: 32x in dim m, 25x in quality σ \Rightarrow 67x in keysize
- ✓ New kind of trapdoor not a basis! (But just as powerful.)

 - * Delegation: size grows as $O(\dim)$, versus $O(\dim^2)$ [CHKP'10]
- More efficient applications (beyond "black-box" improvements)

Concrete Parameter Improvements

	Before [AP'09]	Now (fast f^{-1})	Improvement
Dim m	${\rm slow}\;f^{-1}:\;>5n\log q$	$2n\log q \ (\stackrel{s}{\approx})$	$25 - \log a$
	fast f^{-1} : $> n \log^2 q$	$n(1 + \log q) \ (\stackrel{\scriptscriptstyle c}{pprox})$	2.0 - 10g q

Concrete Parameter Improvements

	Before [AP'09]	Now (fast f^{-1})	Improvement
Dim m	slow f^{-1} : $> 5n \log q$	$2n\log q~(\stackrel{s}{pprox})$	$2.5 - \log q$
	fast $f^{-1}:~>n\log^2 q$	$n(1 + \log q) \ (\stackrel{c}{\approx})$	$2.0 - \log q$
Quality σ	slow f^{-1} : $20\sqrt{n\log q}$	$1.6./n \log q$	$12.5 - 10\sqrt{\log q}$
	fast f^{-1} : $16\sqrt{n\log^2 q}$	$1.0\sqrt{n}\log q$	

Concrete Parameter Improvements

	Before [AP'09]	Now (fast f^{-1})	Improvement
Dim m	slow f^{-1} : $> 5n \log q$	$2n\log q ~(\stackrel{s}{\approx})$	$2.5 - \log a$
	fast f^{-1} : $> n \log^2 q$	$n(1 + \log q) \ (\stackrel{c}{\approx})$	$2.0 \log q$
Quality σ	slow f^{-1} : $20\sqrt{n\log q}$	$1.6./n \log q$	$12.5 - 10\sqrt{\log q}$
	fast f^{-1} : $16\sqrt{n\log^2 q}$	$1.0\sqrt{n}\log q$	

Example parameters for (ring-based) GPV signatures:

	n	q	δ to break	pk size (bits)
Before (fast f^{-1})	436	2^{32}	1.007	$\approx 17 \times 10^6$
Now	284	2^{24}	1.007	$\approx 36 \times 10^4$

Bottom line: \approx 45-fold improvement in key size.

1 Design a fixed, public lattice defined by "gadget" G. Give fast, parallel, offline algorithms for $f_{\mathbf{G}}^{-1}$, $g_{\mathbf{G}}^{-1}$.

- **1** Design a fixed, public lattice defined by "gadget" G. Give fast, parallel, offline algorithms for $f_{\mathbf{G}}^{-1}$, $g_{\mathbf{G}}^{-1}$.
- **2** Randomize $G \leftrightarrow A$ via a "nice" unimodular transformation. (The transformation is the trapdoor!)

- **1** Design a fixed, public lattice defined by "gadget" G. Give fast, parallel, offline algorithms for $f_{\mathbf{G}}^{-1}$, $g_{\mathbf{G}}^{-1}$.
- **3** Reduce f_A^{-1} , g_A^{-1} to f_G^{-1} , g_G^{-1} plus pre-/post-processing.

- Design a fixed, public lattice defined by "gadget" G. Give fast, parallel, offline algorithms for f_G⁻¹, g_G⁻¹.
- 2 Randomize $\mathbf{G} \leftrightarrow \mathbf{A}$ via a "nice" unimodular transformation. (The transformation is the trapdoor!)
- **3** Reduce f_A^{-1} , g_A^{-1} to f_G^{-1} , g_G^{-1} plus pre-/post-processing.

- **1** Design a fixed, public lattice defined by "gadget" G. Give fast, parallel, offline algorithms for $f_{\mathbf{G}}^{-1}$, $g_{\mathbf{G}}^{-1}$.
- **3** Reduce f_A^{-1} , g_A^{-1} to f_G^{-1} , g_G^{-1} plus pre-/post-processing.

- Design a fixed, public lattice defined by "gadget" G. Give fast, parallel, offline algorithms for f_G⁻¹, g_G⁻¹.
- **3** Reduce f_A^{-1} , g_A^{-1} to f_G^{-1} , g_G^{-1} plus pre-/post-processing.

- **1** Design a fixed, public lattice defined by "gadget" G. Give fast, parallel, offline algorithms for $f_{\mathbf{G}}^{-1}$, $g_{\mathbf{G}}^{-1}$.
- **3** Reduce f_A^{-1} , g_A^{-1} to f_G^{-1} , g_G^{-1} plus pre-/post-processing.
- 4 Problem: Transformation distorts noise.

- **1** Design a fixed, public lattice defined by "gadget" G. Give fast, parallel, offline algorithms for $f_{\mathbf{G}}^{-1}$, $g_{\mathbf{G}}^{-1}$.
- **3** Reduce f_A^{-1} , g_A^{-1} to f_G^{-1} , g_G^{-1} plus pre-/post-processing.
- Problem: Transformation distorts noise.
 Solution: add 'perturbation' during pre-/post-processing [P'10]

Gadget ${\bf G}$ construction: the primitive vector ${\bf g}$

• Let $q = 2^k$. Define lattice $\Lambda^{\perp}(\mathbf{g})$ by $1 \times k$ "parity check" vector

$$\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 \times k}.$$

Gadget G construction: the primitive vector \mathbf{g} • Let $q = 2^k$. Define lattice $\Lambda^{\perp}(\mathbf{g})$ by $1 \times k$ "parity check" vector $\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 \times k}$. • $\Lambda^{\perp}(\mathbf{g})$ has a short basis $\mathbf{S} = \begin{bmatrix} 2 & & \\ -1 & 2 & & \\ & -1 & \ddots & \\ & & & 2 \\ & & & -1 & 2 \end{bmatrix} \in \mathbb{Z}^{k \times k}$ Gadget G construction: the primitive vector gLet $q = 2^k$. Define lattice $\Lambda^{\perp}(\mathbf{g})$ by $1 \times k$ "parity check" vector $\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 \times k}.$ $\ \ \, \Lambda^{\perp}(\mathbf{g}) \text{ has a short basis } \mathbf{S} = \begin{bmatrix} 2 \\ -1 & 2 \\ & -1 & \ddots \\ & & 2 \\ & & -1 & 2 \end{bmatrix} \in \mathbb{Z}^{k \times k}$ almost orthogonal ($\widetilde{\mathbf{S}} = 2 \cdot \mathbf{I}_k$).

Gadget G construction: the primitive vector gLet $q = 2^k$. Define lattice $\Lambda^{\perp}(\mathbf{g})$ by $1 \times k$ "parity check" vector $\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 \times k}.$ $\ \, \Lambda^{\perp}(\mathbf{g}) \text{ has a short basis } \mathbf{S} = \begin{bmatrix} 2 & & \\ -1 & 2 & & \\ & -1 & \ddots & \\ & & & 2 \\ & & & & -1 & 2 \end{bmatrix} \in \mathbb{Z}^{k \times k}$ almost orthogonal ($\widetilde{\mathbf{S}} = 2 \cdot \mathbf{I}_k$), sparse (2k - 1 nonzero entries),

Gadget G construction: the primitive vector gLet $q = 2^k$. Define lattice $\Lambda^{\perp}(\mathbf{g})$ by $1 \times k$ "parity check" vector $\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 \times k}.$ almost orthogonal ($\widetilde{\mathbf{S}} = 2 \cdot \mathbf{I}_k$), sparse (2k - 1 nonzero entries), and low dimensional ($k = \log q = O(\log n)$)

Gadget G construction: the primitive vector \mathbf{g} • Let $q = 2^k$. Define lattice $\Lambda^{\perp}(\mathbf{g})$ by $1 \times k$ "parity check" vector $\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 \times k}$. $\begin{bmatrix} 2 \\ -1 & 2 \end{bmatrix}$

 $\ \ \, \Lambda^{\perp}(\mathbf{g}) \text{ has a short basis } \mathbf{S} = \begin{bmatrix} 2 \\ -1 & 2 \\ & -1 & \ddots \\ & & 2 \\ & & -1 & 2 \end{bmatrix} \in \mathbb{Z}^{k \times k}$

almost orthogonal ($\tilde{\mathbf{S}} = 2 \cdot \mathbf{I}_k$), sparse (2k - 1 nonzero entries), and low dimensional ($k = \log q = O(\log n)$)

 f_g, g_g are efficiently invertible, either by optimized versions of [Babai'86,Klein'01,GPV'08], or other specialized algorithms. Gadget G construction: the primitive vector g Let $q = 2^k$. Define lattice $\Lambda^{\perp}(\mathbf{g})$ by $1 \times k$ "parity check" vector $\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 \times k}$. $\Lambda^{\perp}(\mathbf{g})$ has a short basis $\mathbf{S} = \begin{bmatrix} 2 \\ -1 & 2 \\ & -1 & \ddots \\ & & 2 \\ & & & -1 & 2 \end{bmatrix} \in \mathbb{Z}^{k \times k}$

almost orthogonal ($\widetilde{\mathbf{S}} = 2 \cdot \mathbf{I}_k$), sparse (2k - 1 nonzero entries), and low dimensional ($k = \log q = O(\log n)$)

 f_g, g_g are efficiently invertible, either by optimized versions of [Babai'86,Klein'01,GPV'08], or other specialized algorithms.

Inverting f on very small inputs

Find $\mathbf{x} \in \{0,1\}^k$ such that $f_{\mathbf{g}}(\mathbf{x}) = \mathbf{g} \cdot \mathbf{x} = y \mod q$.

Gadget G construction: the primitive vector \mathbf{g} • Let $q = 2^k$. Define lattice $\Lambda^{\perp}(\mathbf{g})$ by $1 \times k$ "parity check" vector $\mathbf{g} := \begin{bmatrix} 1 & 2 & 4 & \cdots & 2^{k-1} \end{bmatrix} \in \mathbb{Z}_q^{1 \times k}$. • $\Lambda^{\perp}(\mathbf{g})$ has a short basis $\mathbf{S} = \begin{bmatrix} 2 \\ -1 & 2 \\ & -1 & \ddots \\ & & & 2 \\ & & & -1 & 2 \end{bmatrix} \in \mathbb{Z}^{k \times k}$

almost orthogonal ($\widetilde{\mathbf{S}} = 2 \cdot \mathbf{I}_k$), sparse (2k - 1 nonzero entries), and low dimensional ($k = \log q = O(\log n)$)

 f_g, g_g are efficiently invertible, either by optimized versions of [Babai'86,Klein'01,GPV'08], or other specialized algorithms.

Inverting f on very small inputs

Find $\mathbf{x} \in \{0, 1\}^k$ such that $f_{\mathbf{g}}(\mathbf{x}) = \mathbf{g} \cdot \mathbf{x} = y \mod q$. Solution: set \mathbf{x} to the binary representation of y

$$\blacktriangleright \text{ Define } \mathbf{G} = \mathbf{I}_n \otimes \mathbf{g} = \begin{bmatrix} \cdots \mathbf{g} \cdots & & & \\ & \cdots \mathbf{g} \cdots & & \\ & & \ddots & \\ & & & \ddots \mathbf{g} \cdots \end{bmatrix} \in \mathbb{Z}_q^{n \times nk}.$$

Now $f_{\mathbf{G}}^{-1}$, $g_{\mathbf{G}}^{-1}$ reduce to n parallel calls to $f_{\mathbf{g}}^{-1}$, $g_{\mathbf{g}}^{-1}$.

▶ Now $f_{\rm G}^{-1}$, $g_{\rm G}^{-1}$ reduce to n parallel calls to $f_{\rm g}^{-1}$, $g_{\rm g}^{-1}$.

Running time: almost linear in n, and trivially parallelizable up to n processors.

▶ Now $f_{\rm G}^{-1}$, $g_{\rm G}^{-1}$ reduce to n parallel calls to $f_{\rm g}^{-1}$, $g_{\rm g}^{-1}$.

Running time: almost linear in n, and trivially parallelizable up to n processors.

▶ Now $f_{\rm G}^{-1}$, $g_{\rm G}^{-1}$ reduce to n parallel calls to $f_{\rm g}^{-1}$, $g_{\rm g}^{-1}$.

Running time: almost linear in n, and trivially parallelizable up to n processors.

1 Define semi-random $[\bar{\mathbf{A}} | \mathbf{G}]$ for uniform (universal) $\bar{\mathbf{A}} \in \mathbb{Z}_q^{n \times \bar{m}}$. (Computing f^{-1} , g^{-1} easily reduce to $f_{\mathbf{G}}^{-1}$, $g_{\mathbf{G}}^{-1}$.)

- Define semi-random $[\bar{\mathbf{A}} | \mathbf{G}]$ for uniform (universal) $\bar{\mathbf{A}} \in \mathbb{Z}_q^{n \times \bar{m}}$. (Computing f^{-1} , g^{-1} easily reduce to $f_{\mathbf{G}}^{-1}$, $g_{\mathbf{G}}^{-1}$.)
- **2** Choose "short" (Gaussian) $\mathbf{R} \leftarrow \mathbb{Z}^{\bar{m} \times n \log q}$ and let

$$\mathbf{A} := [\bar{\mathbf{A}} \mid \mathbf{G}] \underbrace{\begin{bmatrix} \mathbf{I} & -\mathbf{R} \\ & \mathbf{I} \end{bmatrix}}_{\text{unimodular}} = [\bar{\mathbf{A}} \mid \mathbf{G} - \bar{\mathbf{A}}\mathbf{R}].$$

- Define semi-random $[\bar{\mathbf{A}} | \mathbf{G}]$ for uniform (universal) $\bar{\mathbf{A}} \in \mathbb{Z}_q^{n \times \bar{m}}$. (Computing f^{-1} , g^{-1} easily reduce to $f_{\mathbf{G}}^{-1}$, $g_{\mathbf{G}}^{-1}$.)
- **2** Choose "short" (Gaussian) $\mathbf{R} \leftarrow \mathbb{Z}^{\bar{m} \times n \log q}$ and let

$$\mathbf{A} := [\bar{\mathbf{A}} \mid \mathbf{G}] \underbrace{\begin{bmatrix} \mathbf{I} & -\mathbf{R} \\ & \mathbf{I} \end{bmatrix}}_{\text{unimodular}} = [\bar{\mathbf{A}} \mid \mathbf{G} - \bar{\mathbf{A}}\mathbf{R}].$$

* A is uniform if $[\bar{\mathbf{A}} \mid \bar{\mathbf{A}}\mathbf{R}]$ is: leftover hash lemma for $\bar{m} \approx n \log q$.

- Define semi-random $[\bar{\mathbf{A}} | \mathbf{G}]$ for uniform (universal) $\bar{\mathbf{A}} \in \mathbb{Z}_q^{n \times \bar{m}}$. (Computing f^{-1} , g^{-1} easily reduce to $f_{\mathbf{G}}^{-1}$, $g_{\mathbf{G}}^{-1}$.)
- **2** Choose "short" (Gaussian) $\mathbf{R} \leftarrow \mathbb{Z}^{\bar{m} \times n \log q}$ and let

$$\mathbf{A} := [\bar{\mathbf{A}} \mid \mathbf{G}] \underbrace{\begin{bmatrix} \mathbf{I} & -\mathbf{R} \\ & \mathbf{I} \end{bmatrix}}_{\text{unimodular}} = [\bar{\mathbf{A}} \mid \mathbf{G} - \bar{\mathbf{A}}\mathbf{R}].$$

* A is uniform if $[\bar{A} \mid \bar{A}R]$ is: leftover hash lemma for $\bar{m} \approx n \log q$.

With G = 0, we get Ajtai's original method for constructing A with a "weak" trapdoor of ≥ 1 short vector (but not a full basis).

- Define semi-random $[\bar{\mathbf{A}} | \mathbf{G}]$ for uniform (universal) $\bar{\mathbf{A}} \in \mathbb{Z}_q^{n \times \bar{m}}$. (Computing f^{-1} , g^{-1} easily reduce to $f_{\mathbf{G}}^{-1}$, $g_{\mathbf{G}}^{-1}$.)
- **2** Choose "short" (Gaussian) $\mathbf{R} \leftarrow \mathbb{Z}^{\bar{m} \times n \log q}$ and let

$$\mathbf{A} := [\bar{\mathbf{A}} \mid \mathbf{G}] \underbrace{\begin{bmatrix} \mathbf{I} & -\mathbf{R} \\ & \mathbf{I} \end{bmatrix}}_{\text{unimodular}} = [\bar{\mathbf{A}} \mid \mathbf{G} - \bar{\mathbf{A}}\mathbf{R}].$$

* A is uniform if $[\bar{A} | \bar{A}R]$ is: leftover hash lemma for $\bar{m} \approx n \log q$.

With G = 0, we get Ajtai's original method for constructing A with a "weak" trapdoor of ≥ 1 short vector (but not a full basis).

* $[\mathbf{I} \mid \bar{\mathbf{A}} \mid -(\bar{\mathbf{A}}\mathbf{R}_1 + \mathbf{R}_2)]$ is pseudorandom (under LWE) for $\bar{m} = n$.

1 Linear transformation is easily computable $(\bar{m} \cdot n \log q)$

$$\mathbf{T} = \begin{bmatrix} \mathbf{I} & -\mathbf{R} \\ & \mathbf{I} \end{bmatrix} \in \mathbb{Z}_q^{(\bar{m}+n\log q) \times (\bar{m}+n\log q)}$$

1 Linear transformation is easily computable $(\bar{m} \cdot n \log q)$

$$\mathbf{T} = \begin{bmatrix} \mathbf{I} & -\mathbf{R} \\ & \mathbf{I} \end{bmatrix} \in \mathbb{Z}_q^{(\bar{m}+n\log q) \times (\bar{m}+n\log q)}$$

2 Inverse transformation is just as simple

$$\mathbf{T}^{-1} = \begin{bmatrix} \mathbf{I} & +\mathbf{R} \\ & \mathbf{I} \end{bmatrix}$$

1 Linear transformation is easily computable $(\bar{m} \cdot n \log q)$

$$\mathbf{T} = \begin{bmatrix} \mathbf{I} & -\mathbf{R} \\ & \mathbf{I} \end{bmatrix} \in \mathbb{Z}_q^{(\bar{m}+n\log q) imes (\bar{m}+n\log q)}$$

2 Inverse transformation is just as simple

$$\mathbf{T}^{-1} = \begin{bmatrix} \mathbf{I} & +\mathbf{R} \\ & \mathbf{I} \end{bmatrix}$$

3 Batch application of T (or T^{-1}) to several inputs can be computed asymptotically faster using fast matrix multiplication algorithms.

1 Linear transformation is easily computable $(\bar{m} \cdot n \log q)$

$$\mathbf{T} = \begin{bmatrix} \mathbf{I} & -\mathbf{R} \\ & \mathbf{I} \end{bmatrix} \in \mathbb{Z}_q^{(\bar{m}+n\log q) imes (\bar{m}+n\log q)}$$

2 Inverse transformation is just as simple

$$\mathbf{T}^{-1} = \begin{bmatrix} \mathbf{I} & +\mathbf{R} \\ & \mathbf{I} \end{bmatrix}$$

- Batch application of T (or T⁻¹) to several inputs can be computed asymptotically faster using fast matrix multiplication algorithms.
- Both T and T⁻¹ introduce relatively low (in fact, optimal) distorsion because R has small (Gaussian) entries.

1 Linear transformation is easily computable $(ar{m}\cdot n\log q)$

$$\mathbf{T} = \begin{bmatrix} \mathbf{I} & -\mathbf{R} \\ & \mathbf{I} \end{bmatrix} \in \mathbb{Z}_q^{(\bar{m}+n\log q) \times (\bar{m}+n\log q)}$$

2 Inverse transformation is just as simple

$$\mathbf{T}^{-1} = \begin{bmatrix} \mathbf{I} & +\mathbf{R} \\ & \mathbf{I} \end{bmatrix}$$

- **3** Batch application of T (or T^{-1}) to several inputs can be computed asymptotically faster using fast matrix multiplication algorithms.
- Both T and T⁻¹ introduce relatively low (in fact, optimal) distorsion because R has small (Gaussian) entries.
- **6** A basis for $\Lambda^{\perp}(\mathbf{A})$ is easily computed using \mathbf{T} , but never needed: \mathbf{R} serves as a new trapdoor

Conclusions

► A new, simpler, more efficient trapdoor notion and construction
Conclusions

- A new, simpler, more efficient trapdoor notion and construction
- Exposing structure of trapdoor to applications yields further efficiency improvements

Conclusions

- A new, simpler, more efficient trapdoor notion and construction
- Exposing structure of trapdoor to applications yields further efficiency improvements
- Key sizes and algorithms for "strong" trapdoors are now practical

Conclusions

- A new, simpler, more efficient trapdoor notion and construction
- Exposing structure of trapdoor to applications yields further efficiency improvements
- Key sizes and algorithms for "strong" trapdoors are now practical

Questions?