Property Preserving Symmetric Encryption

Omkant Pandey

Microsoft, Redmond

Yannis Rouselakis

University of Texas at Austin

Traditional Cryptography

New Goal: Computations on Encrypted Data

- Indexing
- Range queries
- Data clustering
- Keyword search
- General computations

Order-Preserving Encryption [BCLO09, BC011]

Order-Preserving Encryption [BCLO09, BC011]

Property Preserving Encryption

A property P is a function of arity k

$$P(m_1, m_2, \dots, m_k) = 0 \text{ or } 1$$

A Property Preserving Encryption (PPE) scheme contains

- Setup $\rightarrow (pp, sk)$
- $\mathsf{Encrypt}(sk, m) \to ct$
- $\mathsf{Decrypt}(sk,ct) \to m$
- $\mathsf{Test}(pp, ct_1, ct_2, \dots, c_k) \to \{0, 1\}$

Test should satisfy:

$$\mathsf{Test}(pp, ct_1, ct_2, \dots, ct_k) = P(m_1, m_2, \dots, m_k)$$

 $publicly\ computable \rightarrow \text{symmetric key encryption}.$

Left or Right Security [BDJR97]

Restriction: For all
$$(i_1, i_2, \dots, i_k) \in [Q]^k$$
:

$$P(m_{i_1}^L, m_{i_2}^L, \dots, m_{i_k}^L) = P(m_{i_1}^R, m_{i_2}^R, \dots, m_{i_k}^R)$$

Find Then Guess Security [BDJR97]

Challenger
$$b \overset{\$}{\in} \{L,R\}$$
 $ct_i = \mathsf{Enc}(sk,m_i)$ $ct_* = \mathsf{Enc}(sk,m_*^b)$

Restriction: For all
$$(i_1, i_2, ..., i_k) \in ([Q] \cup \{*\})^k$$
:
$$P(m_{i_1}^L, m_{i_2}^L, ..., m_{i_k}^L) = P(m_{i_1}^R, m_{i_2}^R, ..., m_{i_k}^R)$$

Definitional Relationships

Standard Symmetric Key Cryptography [BDJR97]:

Hybrid Argument

(Symmetric) Property Preserving Encryption:

Not Possible

Left Sequence not "reachable" from Right Sequence

- Same equality pattern Different "reachability" class
- Depends on the property at hand

Definitional Relationships

Theorem (informal):

Left or Right security strictly stronger than Find then Guess

Theorem (informal):

There exists a hierarchy of Find then Guess

We will assume that there exists an FtG secure scheme

$$\Pi = (\mathsf{Setup}, \mathsf{Encrypt}, \mathsf{Decrypt}, \mathsf{Test})$$

We will construct a new scheme

$$\Pi^* = (\mathsf{Setup}^*, \mathsf{Encrypt}^*, \mathsf{Decrypt}^*, \mathsf{Test}^*)$$

Such that: Π^* is FtG secure, **but** not LoR secure.

Quadratic Residues

Consider $\mathcal{M} = \mathbb{Z}_p^* = \{1, 2, \dots, p-1\},$ where p prime. We have that:

$$QR = \{x \in \mathbb{Z}_p^* | \exists y \in \mathbb{Z}_p^* : x = y^2\}$$
$$QNR = \mathbb{Z}_p^* \backslash QR$$

For z = xy, where $x, y, z \in \mathbb{Z}_p^*$,

z is in QR if and only if

Both x and y are in QROR

Both x and y are in QNR

Consider the binary property:

$$P(x,y) = \begin{cases} 1 & \text{if } x \cdot y \in QR \\ 0 & \text{if } x \cdot y \in QNR \end{cases}$$

Suppose $\Pi = (\mathsf{Setup}, \mathsf{Encrypt}, \mathsf{Decrypt}, \mathsf{Test})$ is FtG secure on property P:

$$\mathsf{Test}(\mathsf{Encrypt}(x),\mathsf{Encrypt}(y)) = P(x,y)$$

Create a new scheme $\Pi^* = (\mathsf{Setup}^*, \mathsf{Encrypt}^*, \mathsf{Decrypt}^*, \mathsf{Test}^*)$ where: Setup*: Calls Setup $\rightarrow (pp, sk)$ Samples t from $\{0,1\}$ Outputs $pp^* = pp$ and $sk^* = (sk, t)$ $\mathsf{Encrypt}^*(sk^*, m)$: Calls Encrypt $(sk, m) \rightarrow ct$ Samples b from $\{0,1\}$ If b = 0 outputs $ct^* = (ct, b, t)$ If b = 1 outputs $ct^* = (ct, b, t \oplus \mathcal{J}(m))$

$$\mathcal{J}(m) = \left\{ egin{array}{ll} 0 & ext{if } m \in \mathcal{QR} \\ 1 & ext{if } m \in \mathcal{QNR} \end{array}
ight.$$

One-time pad

Proving the Separation: Π^* is FtG secure

It is true:

$$P(m_i, m_*^L) = P(m_i, m_*^R)$$

Case 2: $\mathcal{J}(m_*^L) \neq \mathcal{J}(m_*^R)$

Proving the Separation: Π^* is FtG secure

$$\mathsf{Encrypt}^*(sk^*,m)\colon \ \mathsf{Encrypt}(sk,m) o ct \ b \overset{\$}{\leftarrow} \{0,1\} \ \mathsf{If} \ b = 0 \ \mathsf{then} \ ct^* = (ct,b,t) \ \mathsf{else} \ ct^* = (ct,b,t \oplus \mathcal{J}(m))$$

Case 1:
$$\mathcal{J}(m_*^L) = \mathcal{J}(m_*^R)$$

Simulator knows t and simulates the game perferctly by answering all single queries and the challenge query.

Case 2:
$$\mathcal{J}(m_*^L) \neq \mathcal{J}(m_*^R)$$

Simulator responds to the *one* query with (ct, b_1, b_2) where b_1, b_2 uniformly random bits.

Proving the Separation: Π^* is not LoR secure

Proving the Hierarchy

Assuming there exists an FtGⁿ secure scheme Π , we construct a scheme Π^* that is FtGⁿ secure, but not FtGⁿ⁺¹ secure.

Proving the Hierarchy: Main Ideas

- Use an n-time pad to encode information about sign.
- In case 1 simulate perfectly knowing the pad.
- In case 2 output suitable random integers.
- Correct simulation until n challenge queries.
- Break with constant probability at n+1 challenge queries.

Constructions

- Unary Properties: Trivial generic construction
- Binary Properties using Predicate Encryption [KSW08]:
 - Requires very strong security
 - No candidate construction known for non trivial properties
- Ternary properties and above: Open Problem

Pairings in Composite Order Groups

Let \mathbb{G} be a group of *composite* order $N = p \cdot q$ with a bilinear mapping:

$$e: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T \text{ and } e(g^a, g^b) = e(g, g)^{ab}$$

Independence Property:

Let g_0, g_1 be generators of the subgroups of order p, q, respectively. Then:

$$e(g_0^a \cdot g_1^b, g_0^c \cdot g_1^d) = e(g_0, g_0)^{ac} \cdot e(g_1, g_1)^{bd}$$

In particular:
$$e(g_0^a, g_1^b) = 1$$

Orthogonality

Property: Orthogonality of *n*-dimensional vectors in \mathbb{Z}_p .

$$\vec{a} = (a_1, a_2, \dots, a_n)$$
 $\vec{b} = (b_1, b_2, \dots, b_n)$
$$\vec{a} \cdot \vec{b} = a_1 \cdot b_1 + a_2 \cdot b_2 + \dots + a_n \cdot b_n$$

$$P(\vec{a}, \vec{b}) = \begin{cases} 0 & \text{if } \vec{a} \cdot \vec{b} = 0 \pmod{p} \\ 1 & \text{otherwise} \end{cases}$$

Explicit Construction: Setup and Encrypt

Secret key: g_0, g_1 and $v, t_1, t_2, \ldots, t_n \in \mathbb{Z}_p$ such that:

$$v^2 = t_1^2 + t_2^2 + \ldots + t_n^2$$

Encryption of $\vec{a} = (a_1, a_2, \dots, a_n)$:

Pick $r, s \in \mathbb{Z}_p$ and output

$$g_1^{rv}, (g_0^{sa_1} \cdot g_1^{rt_1}, g_0^{sa_2} \cdot g_1^{rt_2}, \dots, g_0^{sa_n} \cdot g_1^{rt_n})$$

Explicit Construction: Test

First pairing: $e(g_1, g_1)^{rr'v^2}$

Product of *n* pairings:

$$e(g_0, g_0)^{ss'a_1b_1}e(g_1, g_1)^{rr't_1^2} \cdot \dots$$

$$e(g_0, g_0)^{ss'a_nb_n}e(g_1, g_1)^{rr't_n^2}$$

$$= e(g_0, g_0)^{ss'\cdot(\vec{a}\cdot\vec{b})}e(g_1, g_1)^{rr'(t_1^2+\dots+t_n^2)}$$

New Directions

- New interesting properties:
 - Ternary properties and above.
 - Arithmetic progressions.
 - Geometric shapes Straight Lines.
 - General properties.
- Using lattices, since pairings seem suitable only for binary properties.
- "Privatizing" popular algorithms:
 - Clustering
 - Data classification
- Generalizing the properties to functions
 - → Powerful public computations on encrypted data.

Questions?