Signature Schemes with Efficient Protocols and Dynamic Group Signatures from Lattice Assumptions

Benoît Libert^{1,2} San Ling³ Fabrice Mouhartem¹ Khoa Nguyen³ Huaxiong Wang³

¹É.N.S. de Lyon, France

²CNRS, France

³Nanyang Technological University, Singapore

Asiacrypt, Hanoi, 06/12/2016

Important Goal: Anonymous authentication.

Important Goal: Anonymous authentication.

e.g. e-voting, e-cash, group signatures, anonymous credentials...

Important Goal: Anonymous authentication.

e.g. e-voting, e-cash, group signatures, anonymous credentials...

Ingredients

- A signature scheme
- Zero-knowledge (ZK) proofs

Important Goal: Anonymous authentication.

e.g. e-voting, e-cash, group signatures, anonymous credentials...

Ingredients

- ► A signature scheme
- Zero-knowledge (ZK) proofs compatible with this signature (no hash functions)

Important Goal: Anonymous authentication.

e.g. e-voting, e-cash, group signatures, anonymous credentials...

Ingredients

- ► A signature scheme
- Zero-knowledge (ZK) proofs compatible with this signature (no hash functions)

A user wants to take public transportations.

Authenticity & Integrity

- Authenticity & Integrity
- Anonymity

- Authenticity & Integrity
- Anonymity

► Dynamicity
$$i \leftarrow Join$$

- Authenticity & Integrity
- Anonymity
- Dynamicity $i \xrightarrow{\text{Join}} (\Box)$
- ► Traceability 😂

Dynamic group signatures

In dynamic group signatures, new group members can be introduced at any time.

The dynamic group setting:

Dynamic group signatures

In dynamic group signatures, new group members can be introduced at any time.

The dynamic group setting:

Add users without re-running the Setup phase;

Dynamic group signatures

In dynamic group signatures, new group members can be introduced at any time.

The dynamic group setting:

- Add users without re-running the Setup phase;
- Even if everyone, including authorities, is dishonest, no one can sign in your name;

Dynamic group signatures

In dynamic group signatures, new group members can be introduced at any time.

The dynamic group setting:

- Add users without re-running the Setup phase;
- Even if everyone, including authorities, is dishonest, no one can sign in your name;
- Most use cases require dynamic groups (e.g., anonymous access control in buildings).

Anonymous Credentials (Chaum'85, Camenisch-Lysyanskya'01)

Principle (e.g., U-Prove, Idemix)

Involves Authority, Users and Verifiers.

- User dynamically obtains credentials from an authority under a pseudonym (= commitment to a digital identity)
- ...and can dynamically prove possession of credentials using different (*unlinkable*) pseudonyms

Different flavors: one-show/multi-show credentials, attribute-based access control,...

Anonymous Credentials (Chaum'85, Camenisch-Lysyanskya'01)

Principle (e.g., U-Prove, Idemix)

Involves Authority, Users and Verifiers.

- User dynamically obtains credentials from an authority under a pseudonym (= commitment to a digital identity)
- ...and can dynamically prove possession of credentials using different (*unlinkable*) pseudonyms

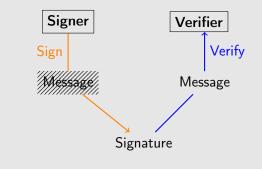
Different flavors: one-show/multi-show credentials, attribute-based access control,...

General construction from signature with efficient protocols:

- ► Authority gives a user a signature on a committed message;
- ► User proves that same secret underlies different pseudonyms;
- ► User proves that he possesses a message-signature pair.

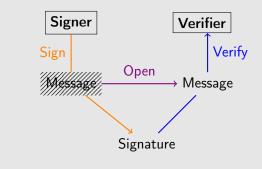
Signature with Efficient Protocols

Signature Scheme with Efficient Protocols (Camenisch-Lysyanskya, SCN'02)



Signature with Efficient Protocols

Signature Scheme with Efficient Protocols (Camenisch-Lysyanskya, SCN'02)

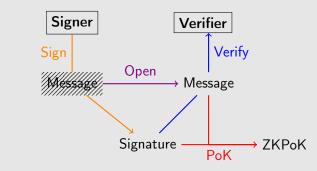


Protocol for signing committed messages

Fabrice Mouhartem Signatures with Efficient Protocols and Lattice-Based Dynamic GS 06.12.2016 6/30

Signature with Efficient Protocols

Signature Scheme with Efficient Protocols (Camenisch-Lysyanskya, SCN'02)



- Protocol for signing committed messages
- Proof of Knowledge (PoK) of (Message; Signature)

Fabrice Mouhartem Signatures with Efficient Protocols and Lattice-Based Dynamic GS 06.12.2016 6/30

Lattice-Based Cryptography

Lattice

A lattice is a discrete subgroup of \mathbb{R}^n . Can be seen as integer linear combinations of a finite set of vectors.

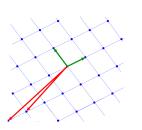
$$\Lambda(\mathbf{b}_1,\ldots,\mathbf{b}_n) = \left\{\sum_{i\leq n} a_i \mathbf{b}_i \mid a_i \in \mathbb{Z}
ight\}$$

Lattice-Based Cryptography

Lattice

A lattice is a discrete subgroup of \mathbb{R}^n . Can be seen as integer linear combinations of a finite set of vectors.

$$\Lambda(\mathbf{b}_1,\ldots,\mathbf{b}_n) = \left\{\sum_{i\leq n} a_i \mathbf{b}_i \mid a_i \in \mathbb{Z}\right\}$$



Why?

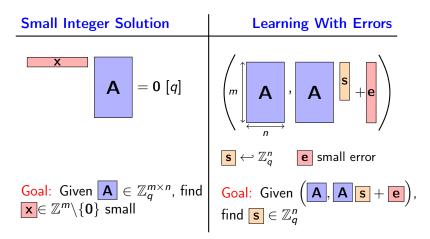
- Simple and efficient;
- ► Still conjectured quantum-resistant;
- Connection between average-case and worst-case problems;
- ► Powerful functionalities (e.g., FHE).

 \rightarrow Finding a non-zero short vector in a lattice is hard.

Fabrice Mouhartem Signatures with Efficient Protocols and Lattice-Based Dynamic GS 06.12.2016 7/30

Hardness Assumptions: SIS and LWE

Parameters: *n* dimension, $m \ge n$, *q* modulus. For $\blacksquare \hookrightarrow \mathcal{U}(\mathbb{Z}_q^{m \times n})$:



- 1991 Chaum and van Heyst: introduction
- 2000 Ateniese, Camenisch, Joye and Tsudik: first scalable solution
- 2003 Bellare, Micciancio and Warinschi: model for static groups

- 1991 Chaum and van Heyst: introduction
- 2000 Ateniese, Camenisch, Joye and Tsudik: first scalable solution
- 2003 Bellare, Micciancio and Warinschi: model for static groups
- 2004 Kiayias and Yung: model for dynamic groups
- 2004 Bellare, Shi and Zhang: model for dynamic groups

- 1991 Chaum and van Heyst: introduction
- 2000 Ateniese, Camenisch, Joye and Tsudik: first scalable solution
- 2003 Bellare, Micciancio and Warinschi: model for static groups
- 2004 Kiayias and Yung: model for dynamic groups
- 2004 Bellare, Shi and Zhang: model for dynamic groups
- 2010 Gordon, Katz and Vaikuntanathan: first lattice-based scheme
- 2013 Laguillaumie, Langlois, Libert and Stehlé: log-size signatures from lattices

- 1991 Chaum and van Heyst: introduction
- 2000 Ateniese, Camenisch, Joye and Tsudik: first scalable solution
- 2003 Bellare, Micciancio and Warinschi: model for static groups
- 2004 Kiayias and Yung: model for dynamic groups
- 2004 Bellare, Shi and Zhang: model for dynamic groups
- 2010 Gordon, Katz and Vaikuntanathan: first lattice-based scheme
- 2013 Laguillaumie, Langlois, Libert and Stehlé: log-size signatures from lattices

No dynamic group signature scheme based on lattices

Fabrice Mouhartem Signatures with Efficient Protocols and Lattice-Based Dynamic GS 06.12.2016 9/30

Outline

Introduction

Anonymous Credentials and Group Signatures Motivations Intuition

Our Constructions

Conclusion

Signature with Efficient Protocols (CL'02)

A signature scheme (Keygen, $Sign_{sk}$, $Verif_{vk}$) with protocols:

- Sign a committed value;
- ► Prove possession of a signature.

Signature with Efficient Protocols (CL'02)

- A signature scheme (Keygen, $Sign_{sk}, Verif_{vk})$ with protocols:
 - Sign a committed value;
 - ► Prove possession of a signature.

Security

- Unforgeability;
- Security of the two protocols;
- Anonymity.

 \rightarrow many applications for privacy-based protocols.

Signature with Efficient Protocols (CL'02)

- A signature scheme (Keygen, $Sign_{sk}, Verif_{vk})$ with protocols:
 - Sign a committed value;
 - ► Prove possession of a signature.

Security

- Unforgeability;
- Security of the two protocols;
- Anonymity.
- \rightarrow many applications for privacy-based protocols.

Existing constructions rely on Strong RSA assumption or bilinear maps.

Dynamic Group Signature

It is a tuple of algorithms (Setup, Join, Sign, Verify, Open) acting according to their names.

Dynamic Group Signature

It is a tuple of algorithms (Setup, Join, Sign, Verify, Open) acting according to their names.

► Setup:

Input: security parameter λ , bound on group size NOutput: public parameters \mathcal{Y} , group manager's secret key S_{GM} , the opening authority's secret key S_{OA} ;

Dynamic Group Signature

It is a tuple of algorithms (Setup, Join, Sign, Verify, Open) acting according to their names.

Join: interactive protocols between U_i ⇐ GM. Provide (cert_i, sec_i) to U_i. Where cert_i attests the secret sec_i. Update the user list along with the certificates;

Dynamic Group Signature

It is a tuple of algorithms (Setup, Join, Sign, Verify, Open) acting according to their names.

- Sign and Verify proceed in the obvious way;
- ► Open:

Input: **OA**'s secret S_{OA} , M and Σ Output: *i*.

Three security notions

Anonymity: only OA can open a signature;

Security

Three security notions

- Anonymity: only OA can open a signature;
- Traceability (= security of honest GM against users): no coalition of malicious users can create a signature that cannot be traced to one of them;

Security

Three security notions

- ► Anonymity: only OA can open a signature;
- Traceability (= security of honest GM against users): no coalition of malicious users can create a signature that cannot be traced to one of them;
- Non-frameability (= security of honest members): colluding GM and OA cannot frame honest users.

Outline

Introduction

Anonymous Credentials and Group Signatures Motivations Intuition

Our Constructions

Conclusion

Based on a variant of Boyen's signature (PKC'10) Given $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and $\{\mathbf{A}_i\}_{i=0}^{\ell} \in \mathbb{Z}_q^{n \times m}$, the signature is a small $\mathbf{d} \in \mathbb{Z}^{2m}$ s.t. $\mathbf{A} \quad \mathbf{A}_0 + \sum_{j=1}^{\ell} \mathfrak{m}_j \mathbf{A}_j$ $\cdot \mathbf{d} = \mathbf{0} \quad [q].$ The private key is a short $\mathbf{T}_{\mathbf{A}} \in \mathbb{Z}^{m \times m}$ s.t. $\mathbf{A} \cdot \mathbf{T}_{\mathbf{A}} = \mathbf{0} \quad [q].$

Based on a variant of Boyen's signature (PKC'10) Given $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and $\{\mathbf{A}_i\}_{i=0}^{\ell} \in \mathbb{Z}_q^{n \times m}$, the signature is a small $\mathbf{d} \in \mathbb{Z}^{2m}$ s.t. $\mathbf{A} \quad \mathbf{A}_0 + \sum_{j=1}^{\ell} \mathfrak{m}_j \mathbf{A}_j$ $\cdot \mathbf{d} = \mathbf{0} \quad [q].$ The private key is a short $\mathbf{T}_{\mathbf{A}} \in \mathbb{Z}^{m \times m}$ s.t. $\mathbf{A} \cdot \mathbf{T}_{\mathbf{A}} = \mathbf{0} \quad [q].$

(A modification of) Böhl *et al.*'s variant (Eurocrypt'13) $\tau \leftarrow \mathcal{U}(\{0,1\}^{\ell})$, **D** and **u** are public, $\mathfrak{m} \in \{0,1\}^{2m}$ encodes Msg. **A** $\mathbf{A}_0 + \sum_{j=1}^{\ell} \tau_j \mathbf{A}_j$ \cdot **d** = **u** + **D** $\cdot \mathfrak{m}$ [q]. $\rightarrow \sigma = (\tau, \mathbf{d})$

To sign $M \in \{0,1\}^{2m}$:

• Sample random $\tau \in \{0,1\}^{\ell}$

To sign $M \in \{0,1\}^{2m}$:

▶ Sample random $au \in \{0,1\}^{\ell}$, random $\mathbf{s} \in D_{\mathbb{Z}^{2m}, \tilde{\sigma}}$

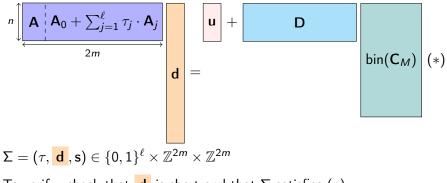
• Compute
$$C_M = D_0 \cdot s + D_1 \cdot M \in \mathbb{Z}_q^{2n}$$

To sign $M \in \{0,1\}^{2m}$:

▶ Sample random $au \in \{0,1\}^{\ell}$, random $\mathbf{s} \in D_{\mathbb{Z}^{2m}, \tilde{\sigma}}$

• Compute
$$C_M = D_0 \cdot s + D_1 \cdot M \in \mathbb{Z}_q^{2n}$$

► Using **T_A**, sample a short **d** s.t.



To verify: check that **d** is short and that Σ satisfies (*).

Kawachi et al.'s commitment (Asiacrypt'08):

$$\mathbf{C}_M = \mathbf{D}_0 \cdot \mathbf{s} + \mathbf{D}_1 \cdot M$$

Is already embedded in Böhl et al. signature.

Kawachi et al.'s commitment (Asiacrypt'08):

$$\mathbf{C}_M = \mathbf{D}_0 \cdot \mathbf{s} + \mathbf{D}_1 \cdot M$$

Is already embedded in Böhl et al. signature.

Difficulty: In the proof, for one of the queries, the signature has a different distribution.

Kawachi et al.'s commitment (Asiacrypt'08):

$$\mathbf{C}_M = \mathbf{D}_0 \cdot \mathbf{s} + \mathbf{D}_1 \cdot M$$

Is already embedded in Böhl et al. signature.

Difficulty: In the proof, for one of the queries, the signature has a different distribution.

Solution: Use Rényi divergence instead of statistical distance to bound adversary's advantage [BLLSS15].

$$R_{a}(P||Q) = \left(\sum_{x \in \text{Supp}(P)} \frac{P(x)^{a}}{Q(x)^{a-1}}\right)^{1/(a-1)}$$

Kawachi et al.'s commitment (Asiacrypt'08):

$$\mathbf{C}_M = \mathbf{D}_0 \cdot \mathbf{s} + \mathbf{D}_1 \cdot M$$

Is already embedded in Böhl et al. signature.

Difficulty: In the proof, for one of the queries, the signature has a different distribution.

Solution: Use Rényi divergence instead of statistical distance to bound adversary's advantage [BLLSS15].

$$R_{a}(P||Q) = \left(\sum_{x \in \text{Supp}(P)} \frac{P(x)^{a}}{Q(x)^{a-1}}\right)^{1/(a-1)}$$

Probability Preservation: $Q(A) \ge P(A)^{\frac{a}{a-1}}/R_a(P||Q)$

Fabrice Mouhartem Signatures with Efficient Protocols and Lattice-Based Dynamic GS 06.12.2016 17/30

Our Signature with efficient protocol ${\bf s}$

Kawachi *et al.* commitment (Asiacrypt'08): For $\mathbf{D}_0, \mathbf{D}_1 \in \mathbb{Z}_q^{2n \times 2m}, \mathbf{s} \leftrightarrow D_{\mathbb{Z}^2m,\sigma}, M \in \{0,1\}^{2m}$ $\mathbf{C}_M = \mathbf{D}_0 \cdot \mathbf{s} + \mathbf{D}_1 \cdot M [q]$

Compatible with Stern's protocol (Crypto'93, [LNSW; PKC'13])

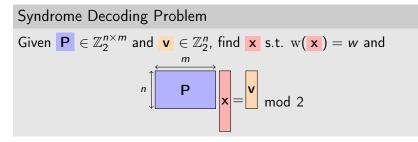
 \implies ZK proof compatible with the signature

Stern's Protocol (Crypto'93)

Stern's protocol: a ZK proof for Syndrome Decoding Problem.

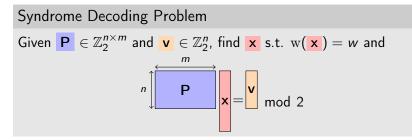
Stern's Protocol (Crypto'93)

Stern's protocol: a ZK proof for Syndrome Decoding Problem.



Stern's Protocol (Crypto'93)

Stern's protocol: a ZK proof for Syndrome Decoding Problem.



[KTX08]: mod $2 \rightarrow \mod q$

[LNSW13]: Extend Stern's protocol for SIS and LWE statements

Recent uses of Stern-like protocols in lattice-based crypto: [LNW15, LLNW16, LLNMW16]

Unified Framework using Stern's Protocol

Problem: protocols using Stern's proofs build them "from scratch". [LNW15, LLNW16]

Unified Framework using Stern's Protocol

Problem: protocols using Stern's proofs build them "from scratch". [LNW15, LLNW16]

Provide a framework to construct ZKAoK:

- ► to prove knowledge of an x ∈ {−1,0,1}ⁿ of a special form verifying P · x = v mod q
 - many lattice statements reduce to this
 - ► this captures various and complex statements

Unified Framework using Stern's Protocol

Problem: protocols using Stern's proofs build them "from scratch". [LNW15, LLNW16]

Provide a framework to construct ZKAoK:

- ► to prove knowledge of an x ∈ {−1,0,1}ⁿ of a special form verifying P · x = v mod q
 - many lattice statements reduce to this
 - ► this captures various and complex statements
- that uses [LNSW13]'s decomposition-extension framework and is combinatoric in Stern's protocol manner

From Static to Dynamic

 Designed from a recent static group signature proposed by Ling, Nguyen and Wang [LNW15];

From Static to Dynamic

- Designed from a recent static group signature proposed by Ling, Nguyen and Wang [LNW15];
- Non-frameability requires to introduce non-homogeneous terms in the SIS relations satisfied by membership certificates;

From Static to Dynamic

- Designed from a recent static group signature proposed by Ling, Nguyen and Wang [LNW15];
- Non-frameability requires to introduce non-homogeneous terms in the SIS relations satisfied by membership certificates;
- Other solutions [LLLS13, NZZ15] use membership certificates made of a complete basis...

... which is problematic with non-homogeneous terms (would give too much freedom to group members).

From Static to Dynamic Difficulties (1/2)

Separate the secrets between OA and GM;

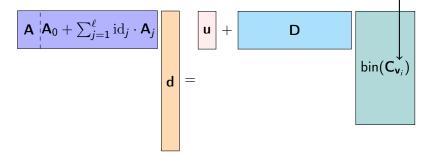
From Static to Dynamic Difficulties (1/2)

- Separate the secrets between OA and GM;
- ► Bind the user's secret z_i to a unique public syndrome $v_i = F \cdot z_i \in \mathbb{Z}_a^{4n}$ for some matrix $F \in \mathbb{Z}_a^{4n \times 4m}$;

From Static to Dynamic Difficulties (1/2)

- Separate the secrets between OA and GM;
- ► Bind the user's secret z_i to a unique public syndrome $v_i = F \cdot z_i \in \mathbb{Z}_q^{4n}$ for some matrix $F \in \mathbb{Z}_q^{4n \times 4m}$;

Use our signature scheme with efficient protocols:



From Static to Dynamic Difficulties (2/2)

- ► Difficulty: achieving security against framing attacks:
 - ► i.e., even a dishonest GM cannot create signatures that open to honest users
 - ► Users need a membership certificate with a membership secret
 - GM must certify that public key

From Static to Dynamic Difficulties (2/2)

- ► Difficulty: achieving security against framing attacks:
 - ► i.e., even a dishonest GM cannot create signatures that open to honest users
 - ► Users need a membership certificate with a membership secret
 - GM must certify that public key
- Be secure against framing attacks without compromising previous security properties;

Setup:

Group public key: $\mathcal{Y} = (A, \{A_i\}_{i=0}^{\ell}, B, D, D_0, D_1, \mathbf{F}, \mathbf{u})$

 $\ell = \log(N) \ (e.g. \ \ell = 30)$

Setup:

Group public key: $\mathcal{Y} = (A, \{A_i\}_{i=0}^{\ell}, B, D, D_0, D_1, \mathbf{F}, \mathbf{u})$

$$\ell = \log(N) \ (e.g. \ \ell = 30)$$

Join algorithm:

 \mathcal{U}_i GM

Setup:

Group public key: $\mathcal{Y} = (A, \{A_i\}_{i=0}^{\ell}, B, D, D_0, D_1, \mathbf{F}, \mathbf{u})$

GM

$$\ell = \log(N) \ (e.g. \ \ell = 30)$$

Join algorithm:

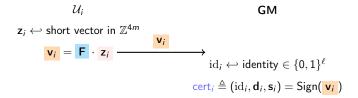
 $\begin{aligned} \mathcal{U}_i \\ \mathbf{z}_i & \leftarrow \text{ short vector in } \mathbb{Z}^{4m} \\ \mathbf{v}_i &= \mathbf{F} \cdot \mathbf{z}_i \end{aligned}$

Setup:

Group public key: $\mathcal{Y} = (\mathbf{A}, \{\mathbf{A}_i\}_{i=0}^{\ell}, \mathbf{B}, \mathbf{D}, \mathbf{D}_0, \mathbf{D}_1, \mathbf{F}, \mathbf{u})$

$$\ell = \log(N) \ (e.g. \ \ell = 30)$$

Join algorithm:

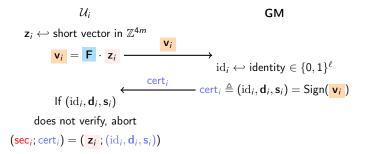


Setup:

Group public key: $\mathcal{Y} = (\mathbf{A}, \{\mathbf{A}_i\}_{i=0}^{\ell}, \mathbf{B}, \mathbf{D}, \mathbf{D}_0, \mathbf{D}_1, \mathbf{F}, \mathbf{u})$

$$\ell = \log(N) \ (e.g. \ \ell = 30)$$

Join algorithm:



From Static to Dynamic Our solution — further steps

Goal

CCA-Anonymity: anonymity in presence of an opening oracle.

From Static to Dynamic Our solution — further steps

Goal

CCA-Anonymity: anonymity in presence of an opening oracle.

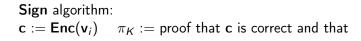
Canetti-Halevi-Katz transformation (Eurocrypt'04)

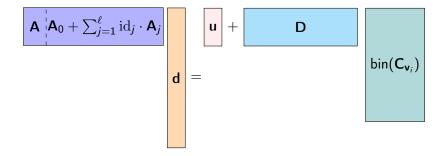
Any IBE implies IND-CCA-secure encryption.

Identity Based Encryption (Shamir'84, Boneh-Franklin'01)

- Encryption computes $C \leftarrow Enc(MPK, ID, M)$
- Decryption computes $M \leftarrow \text{Dec}(MPK, C, d_{\text{ID}})$ where $d_{\text{ID}} \leftarrow \text{Keygen}(MSK, ID)$

Sign algorithm: $c := Enc(v_i)$





Message is bound to π_K via the hash function of the Fiat-Shamir paradigm (signature of knowledge).

Verify algorithm:

• A user verifies if π_K is correct.

Verify algorithm:

• A user verifies if π_K is correct.

Open algorithm:

- ► OA decrypts c to get v_i;
- ► OA searchs for the associated *i* in the Join transcripts, and if so, returns *i*, otherwise abort.

Outline

Introduction

Anonymous Credentials and Group Signatures Motivations Intuition

Our Constructions

Conclusion

Summary

- Lattice-based signature with efficient protocols;
 - for obtaining signatures on committed message;
 - ► for proving possession of a message-signature pair.
- ► First dynamic group signature based on lattice assumptions;
 - ► use simpler version of our signature with efficient protocols;
 - ► enables round-optimal, concurrent joins (Kiayias-Yung, EC'05).
- Unified framework for proving modular linear equations using Stern's technique.

Technical contributions:

- Combine Böhl *et al.* signatures + Ling *et al.* ZK proofs
 ⇒ signature with efficient protocols;
- ► A method of signing public keys so that knowledge of the secret key can be efficiently proved (cf. structure-preserving cryptography).

Thank you all for your attention!

Group Signatures: Comparative Table

Scheme	LLLS	NZZ	LNW
Group PK	$\widetilde{\mathcal{O}}(\lambda^2) \cdot \log N_{\sf gs}$	$\widetilde{\mathcal{O}}(\lambda^2)$	$\widetilde{\mathcal{O}}(\lambda^2) \cdot \log N_{\sf gs}$
User's SK	$\widetilde{\mathcal{O}}(\lambda^2)$	$\widetilde{\mathcal{O}}(\lambda^2)$	$\widetilde{\mathcal{O}}(\lambda)$
Signature	$\widetilde{\mathcal{O}}(\lambda) \cdot \log \mathit{N}_{gs}$	$\widetilde{\mathcal{O}}(\lambda + \log^2 N_{\rm gs})$	$\widetilde{\mathcal{O}}(\lambda) \cdot \log N_{\sf gs}$
Scheme	LLNW	Ours	
Group PK	$\widetilde{\mathcal{O}}(\lambda^2)$	$\widetilde{\mathcal{O}}(\lambda^2) \cdot \log \mathit{N}_{gs}$	
User's SK	$\widetilde{\mathcal{O}}(\lambda) \cdot \log \mathit{N}_{gs}$	$\widetilde{\mathcal{O}}(\lambda)$	
Signature	$\widetilde{\mathcal{O}}(\lambda) \cdot \log \mathit{N}_{gs}$	$\widetilde{\mathcal{O}}(\lambda) \cdot \log \mathit{N}_{gs}$	

One-Time Signature

Definition

A one-time signature scheme consists of a triple of algorithms $\Pi^{ots} = (\mathcal{G}, \mathcal{S}, \mathcal{V})$. Behaves like a digital signature scheme.

Strong unforgeability: impossible to forge a valid signature *even for a previously signed message*.

Usage

We use one-time signature to provide CCA anonymity using Canetti-Halevi-Katz methodology.

CCA anonymity

Definition

No PPT adversary ${\cal A}$ can win the following game with non negligible probability:

- ► *A* makes open queries.
- \mathcal{A} chooses M^* and two different $(\operatorname{cert}_i^*, \operatorname{sec}_i^*)_{i \in \{0,1\}}$
- \mathcal{A} receives $\sigma^{\star} = Sign_{\operatorname{cert}_{b}^{\star}, \operatorname{sec}_{b}^{\star}}(M^{\star})$ for some $b \in \{0, 1\}$
- \mathcal{A} makes other open queries
- \mathcal{A} returns b', and wins if b = b'

ZK Proofs

 Σ -protocol [Dam10]

3-move scheme: (Commit, Challenge, Answer) between 2 users.

Fiat-Shamir Heuristic

Make the Σ -protocol **non-interactive** by setting the challenge to be H(Commit, Public)

From Static to Dynamic Our solution – Ingredients Security proof of the Boyen signature

Lattice algorithms use short basis as *trapdoor* information.

SampleUp
$$\mathbf{A}' = \begin{bmatrix} \mathbf{A} \\ \mathbf{B} \cdot \mathbf{A} + \mathbf{C} \end{bmatrix} \in \mathbb{Z}_q^{2m \times n}, \mathbf{A} \in \mathbb{Z}_q^{m \times n}, \mathbf{T}_{\mathbf{A}} \in \mathbb{Z}_q^{m \times m}, \sigma \mapsto \text{gaussian } \mathbf{v} \in \mathbb{Z}_q^n, \text{ s.t. } \mathbf{v}^T \mathbf{A}' = \mathbf{0}[q]$$

SampleDown $\mathbf{A}' = \begin{bmatrix} \mathbf{A} \\ \mathbf{B} \cdot \mathbf{A} + \mathbf{C} \end{bmatrix} \in \mathbb{Z}_q^{2m \times n}, \mathbf{C} \in \mathbb{Z}_q^{m \times n}, \mathbf{T}_{\mathbf{C}} \in \mathbb{Z}_q^{m \times m}, \sigma \mapsto \text{gaussian } \mathbf{v} \in \mathbb{Z}_q^n, \text{ s.t. } \mathbf{v}^T \mathbf{A}' = \mathbf{0}[q]$

From Static to Dynamic Our solution – Ingredients Security proof of the Boyen signature

Boyen's signature
$$\mathbf{d}^T \left[\frac{\mathbf{A}}{\mathbf{A}_0 + \sum_{i=1}^\ell m_i \mathbf{A}_i} \right] = \mathbf{0}[q]$$

Idea. Set
$$\mathbf{A}_i = \mathbf{Q}_i \mathbf{A} + h_i \mathbf{C}$$

 $\rightarrow \left[\frac{\mathbf{A}}{\mathbf{A}_0 + \sum_{i=1}^{\ell} m_i \mathbf{A}_i} \right] = \left[\frac{\mathbf{A}}{\left(\mathbf{Q}_0 + \sum_{i=1}^{\ell} m_i \mathbf{Q}_i \right) \mathbf{A} + h_M \mathbf{C}} \right]$

⇒ We can use SampleUp in the real setup and SampleDown in the reduction whenever $h_M \neq 0$.

From Static to Dynamic Our solution – Ingredients Security proof of the Boyen signature

Recall

$$\mathbf{A}' := \left[\frac{\mathbf{A}}{\mathbf{A}_0 + \sum_{i=1}^{\ell} m_i \mathbf{A}_i} \right] = \left[\frac{\mathbf{A}}{\left(\mathbf{Q}_0 + \sum_{i=1}^{\ell} m_i \mathbf{Q}_i \right) \mathbf{A} + h_M \mathbf{C}} \right]$$

Forgery. A outputs $\mathbf{d}^{\star} = [\mathbf{d}_1^{\star T} | \mathbf{d}_2^{\star T}]^T$ and $M^{\star} = m_1^{\star} \dots m_{\ell}^{\star}$ such that $\mathbf{d}^{\star T} \mathbf{A}' = 0$. If $h_{M^{\star}} = 0$, then

$$\underbrace{\left(\mathbf{d_1^{\star T}} + \mathbf{d_2^{\star T}} \left(\mathbf{Q}_0 + \sum_{i=1}^{\ell} m_i^{\star} \mathbf{Q}_i\right)\right)}_{\text{valid SIS solution}} \mathbf{A} = \mathbf{0}[q]$$

Remark

Boyen's signature: the reduction aborts if C vanishes. Böhl et al.: answer the request by "programming" the vector

$$\mathbf{u}^{\mathcal{T}} = \mathbf{d}^{\dagger \mathcal{T}} \left[\frac{\mathbf{A}}{\left[(\mathbf{Q}_0 + \sum_{i=1}^{\ell} m_i^{\dagger} \mathbf{Q}_i) \mathbf{A} \right]} - \mathbf{z}_{i^{\dagger}}^{\mathcal{T}} \mathbf{D}.$$

Problem

In this request, a sum of two discrete gaussian is generated differently from the real ${\bf Join}$ protocol.

 \Rightarrow Not the same standard deviation.

Problem

$$\mathsf{z}_{i,0}, \mathsf{z}_{i,1}, \mathsf{z}_i \in \mathbb{Z}^m$$

Consequence.

$$\{ (\mathbf{z}_i, \mathbf{z}_{i,0}, \mathbf{z}_{i,1}) | \mathbf{z}_{i,0} \leftrightarrow D_{\sigma_0}, \mathbf{z}_{i,1} \leftrightarrow D_{\sigma_1}, \mathbf{z}_i = \mathbf{z}_{i,0} + \mathbf{z}_{i,1} \}$$

$$\& \Delta$$

$$\{ (\mathbf{z}_i, \mathbf{z}_{i,0}, \mathbf{z}_{i,1}) | \mathbf{z}_i \leftrightarrow D_{\sigma}, \mathbf{z}_{i,0} \leftrightarrow D_{\sigma_0}, \mathbf{z}_{i,1} = \mathbf{z}_i - \mathbf{z}_{i,0} \}$$

Fabrice Mouhartem Signatures with Efficient Protocols and Lattice-Based Dynamic GS 06.12.2016 39/30

Presentation

$$R_{a}(P||Q) = \left(\sum_{x \in \mathsf{Supp}(P)} \frac{P(x)^{a}}{Q(x)^{a-1}}\right)^{1/(a-1)}$$

Presentation

$$R_{a}(P||Q) = \left(\sum_{x \in \mathsf{Supp}(P)} \frac{P(x)^{a}}{Q(x)^{a-1}}\right)^{1/(a-1)}$$

Measurement of the distance between two distributions

Presentation

$$R_{a}(P||Q) = \left(\sum_{x \in \mathsf{Supp}(P)} \frac{P(x)^{a}}{Q(x)^{a-1}}\right)^{1/(a-1)}$$

- Measurement of the distance between two distributions
- Multiplicative instead of additive
- Probability preservation:

$$Q(A) \ge P(A)^{\frac{a}{a-1}}/R_a(P||Q)$$

```
Hybrid argument:

Real game \xrightarrow{\uparrow} Game 1 \xrightarrow{\uparrow} Game 2 \xrightarrow{\uparrow} Hard Game

\stackrel{\uparrow}{\downarrow} Hardness assumptions \xrightarrow{\downarrow}
```

Bound winning probability. Can be done through **probability preservation**!

Recall

$$Q(A) \ge P(A)^{\frac{a}{a-1}}/R_a(P||Q)$$

$$\Pr[W_2] \ge \Pr[W_1]^{\frac{a}{a-1}} / R_a(Game_1 || Game_2)$$

For instance: $\Pr[W_2] \ge \Pr[W_1]^2 / R_2(Game_1 || Game_2)$

Rényi Divergence In Crypto

Consequence

Usually use *statistical distance* to measure distance between probabilities.

- ightarrow In our setting, implies $q\sim \exp(\lambda)$ (smudging)
- $\rightarrow\,$ Higher cost compared to usual lattice-based crypto parameters