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1. Short lattice signature with tight security reduction w/o ROs.

Techniques Short Sig? Tight Reduction?
Lattice Mixing [Boy'10] v X
Prefix Guessing [MP'12] v X
Confined Guessing [BHJ-+'13] v X
Two-Tier Sig [BKKP'15] X v

2. Adaptively and tightly secure lattice IBE w/o. ROs.

Techniques Tight Reduction?
Admissible Hash [CHKP'12] X
Lattice Mixing [ABB'10] X

Programmable Hash [ZCZ'16] X




Tight Security Reductions

Theorem (template)

If an adversary A (t, €)-breaks the scheme I in the defined security model,
there exists an algorithm B that (t',€')-breaks some computation problem
P where € =¢€/0 and t' =t + o(t) for 6 > 1.

@ ) measures tightness of reductions.

@ Security parameter A\, number of adversarial queries
o Tight reduction: § = O(1);
o Almost tight reduction: 6 = poly(A);
o Lose reduction: 6 = poly(Q).

@ Why tight reductions?
e In practice: a tighter reduction allows shorter security parameters and,
thus, higher efficiency.

e In theory: a tight reduction shows hardness of two computational
problems is close.



Our results

Fully, tightly secure short signature/IBE schemes w/o. RO from SIS/LWE
assumption and a secure pseudorandom function (PRF).

@ epRrr be the security level of a concrete PRF.
@ ¢, ¢ be security levels of our signature scheme and IBE scheme.

® cLWE, €sis be the security levels of LWE, 4 and SIS, 4 3.

) .
€sis + €pRF R €/2 ;  €LwE + €prRF R € /2



Digital Signatures

Algorithm: Correctness:
> (sk, vk) « KeyGen(1%) > V(sk, vk) < KeyGen(1*)
> o < Sign(sk, m) Ver (vk, m, Sign(sk, m)) =1

1 t
> Ver(vk,m,o) = {O Er]ecj(;ilz

Security Model:

) o
my,...

(sk,vk) + KeyGen(1*) 91,100 Ou.tpu.ts (T*, o)
o; < Sign(sk, m;) Wins if m* # m;
& Ver(vk, m*, 0*) =1
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Our Method

We non-trivially combine the following techniques (from different
contexts):

e Katz-Wang's magic bit for tightly secure (full-domain hash)
signatures. [K\W'03]

e Two-sided lattice trapdoors. [GPV'08,ABB'10,Boy'10,MP'12]
@ Boyen's short lattice signature (in the plain model). [Boy'10]

e GSW-FHE/Fully key-homomorphic encryption. [GSW'13,BGG+14]
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@ An unpredictable bit by, € {0,1} associated with every m € M: e.g.
generated by a Pseudorandom Function (PRF)
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@ An unpredictable bit by, € {0,1} associated with every m € M: e.g.
generated by a Pseudorandom Function (PRF)

bm = PRF(K, m)

@ In real schemes:
o Each m has two signatures: o5, and o1 for b € {0,1};
e Signer can produce both;
o Only one of them is issued.
@ In security proofs:
Query Simulator can create oy, for m, but not o1_4,.
(All queries can be answered.)
Forgery Simulator can solve problem for forgery (m*, o1 _.),
but fails for (m*, oy .).
(Adversary chooses correctly with prob. ~ 1/2.)



Short Integer Solution (SIS) Problem and Trapdoors

Definition
Let g,n > 2, m= O(nlogq) and 3 > 0. Given random A € Zg*™ find a
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Definition
Let g,n > 2, m= O(nlogq) and 3 > 0. Given random A € Zg*™ find a
non-zero “short” vector o € Z™, where ||o|| < /3, such that

Ao =0 (mod q)

> Hard without Trapdoor: If A is chosen randomly, finding a solution
x # 0 enables solving GapSVP problem with approximation factor
~ [ -+/n on any n-dimensional lattice.

> Easy with Trapdoor: There is an algorithm TrapGen that generates a
nearly random A and a trapdoor T. Using T one can find a “short”,
non-zero solution.

> GPV-Style Signature Schemes [GPV'08]

o A trapdoor T serves as a signing key;
e A valid solution o serves as a signature.
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R € Z™*™, publicly known trapdoor for G, and h € Z,. Set

F = [AJAR + hG] mod g




Two-Sided Lattice Trapdoors

Two-Sided Trapdoor

Let g,n > 2, m= O(nlogq), A, G € Zg*™-matrix, secret low-norm
R € Z™*™, publicly known trapdoor for G, and h € Z,. Set

F = [AJAR + hG] mod g

> Left trapdoor for real schemes:

e If A has a trapdoor, F has a trapdoor for any h.
> Right trapdoor for proofs:

e h=#0: “right” trapdoor is (R, hG)

o Generate signatures for F.
e h=20: no trapdoor

o Can not generate signatures.

o A signature for F results in a SIS solution for A.



Boyen's Signature

> KeyGen(1%)
o vk: random Zg*™-matrices A, Ay, A1, ..., Ar;
e sk: A’s trapdoor T.

> Sign(sk, m)
o m € {0,1}%; m's i-th bit is m;;
o Uses “left” trapdoor T to find a “short” solution o s.t.

l
AlAo+> m,-A,-} c=0 (mod q)

i=1

Fo =

> Ver(vk, o, m)

o Check if o is “short” and non-zero;
o Check if Fo = 0.
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Proof Idea of Boyen's Signature

@ Ais a SIS challenge. Let hy,..., h; € Zq be secret. For any querying
message m € {0, 1}, set

F = [AJARy, + (1 + X¢_1m;h))G]
= [AlARy, + H(m)G]

R, depends on m and is “short”, and

AR 4+ (1 4+ Z5_ mih)) G ~, Ay + Z5_ miA;
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Proof Idea of Boyen's Signature

@ Ais a SIS challenge. Let hy,..., h; € Zq be secret. For any querying
message m € {0, 1}, set
F = [AARy, + (1 + T m;h;)G]
= [A|AR, + H(m)G]

R, depends on m and is “short”, and
ARpm + (14 Z5_ymih;) G =~ Ag + Ti_ymjA;

@ Apply the principle of two-sided trapdoor:

H(m) = 0 Forgeries of m allows SIS solutions;

H(m) # 0 Generate signatures using “right” trapdoor.
@ Simulator hopes:

o For all @ queries: H(m) # 0 (mod q), happens with prob. (1 —1/q)Q.
o For forgery (o, m): H(m) =0 (mod gq), happens with prob. 1/g.
o Gives a loose reduction: § ~ ((1—1/q)% - l/q)_1 = poly(Q).
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b€ {0,1}, by, = PRF(K, m), “short” matrices R, R},. Replace H(m) by
1—b— by € {0,1}. Set (simulated) vk:

Fp = [A|ARm + (1 —b- bm)G]

Fi_p = [AIAR/, + (b — bm)G]
As required by Katz-Wang proof:

> Generating only “one” signature: gp_ from Fp_:

e Can not produce oi_p,, since F1_j_ looses trapdoor;
o Allows answering all signing queries.

> “Two” valid signatures for m*.

Ob, . Fail
o Forgery (o*,m*): o* = "
O1—b,. Solve SIS
o by« = PRF(K, m*) is unpredictable. With prob. = 1/2, solve SIS.
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Embedding PRF into Fj

e Magic bit b,, = PRF(K, m). For public message m and secret K, we
need to somehow create

ARm + PRF(K, m)G
@ PRF(-,-) can be expressed as a small-depth Boolean circuit:
Crr : {0,11% x {0,1}I" — {0,1}

e ARm + PRF(K, m)G is a ciphertext of FHE [GSW13]/ public key of
fully key-homomorphic encryption [BGG+14].
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Embedding PRF into F, (cont.)

o Let g(u,v) = w be a logical gate. Using evaluation algorithm of
GSW-FHE /fully key-homomorphic encryption, given

A, =AR,+uG ; A,=AR, +VvG

one can deterministically compute unique matrix A, = AR, + wG.
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Embedding PRF into F, (cont.)

o Let g(u,v) = w be a logical gate. Using evaluation algorithm of
GSW-FHE /fully key-homomorphic encryption, given

A, =AR,+uG ; A,=AR, +VvG

one can deterministically compute unique matrix A, = AR, + wG.
o We “encrypt” PRF key K = kika, ..., ks € {0,1}" as

Bk,~ = ARk,. + kG

@ We “encrypt” message bit m; by Cp,, = ARy, + m;G.
@ Using By, ..., By, and Cp,, ..., Gy, and circuit Cprr,

APRF,K,m = AR, + PRF(K, m)G

is publicly computable.
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Our Signature Scheme

> KeyGen(11) — (vk, sk):
Vk = (CPRF,A,Ao,Al, Bkl, Ceey Bkt, Co, Cl) ;Sk = (TA, K)

> Sign(sk,m) — o
e Set b, = PRF(K, m);
° Evaluating APRF,K,m = EV<’3|(CPRF7 Akl, R 7Ak,7 le, ey Cme);
o Set Fp, = [A|A1—b,, — APrF,k,m] and use T4 to output ¢ = o}, s.t.

Fp, -0 =0 (mod q)

> Ver(vk, m,c) — 0/1
o Check if o is small and non-zero;
o Check if Fp- o0 =0 (mod g) or F1 -0 =0 (mod q)

* Using T4, one can generate signatures for Fp_and F;_jp, . But only
“one" of them is issued.
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Our signature is“Hash-and-Sign” signature. Following ideas of
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An IBE Scheme

Our signature is“Hash-and-Sign” signature. Following ideas of
[GPV08,ABB10,Boy10], we obtain an IBE scheme.

> KeyGen(Msk,id) There are “two” keys for one identity. We only give
“one” identity key skiq p,, for Fp,, which is similar to our signature
scheme.

> Encrypt(Pub, id, Msg) We give two “dual-Regev" ciphrtexts for Fo, Fq
Ctxg = S(;r - Fo + eg— = SJ[A’Al + APRF,K,id] + e(;'—

T
Ctx; = S]—_l— -F+ ei'— = SF[A’AO + APRF,K,id] + &
with adjusted noise vectors e, €;.

> Decrypt(skiq, Ctx) Decryptor uses skig to try both ciphertexts.
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* Katz-Wang uses PRFs for making signing stateless.

* The state-of-art lattice-based PRFs, e.g. [BPR'12 BP'14], require
slightly stronger LWE assumptions.

* Want an efficient IBE scheme w/o ROs now? Pick selectively secure
schemes and do “complexity leveraging” [BB'04,BB'11].

*x DO take "leveraging slack” into account setting parameters!
s Still more efficient than native adaptive security (usually)

17/19



Conclusion

@ We proposed a lattice-based signature/IBE scheme with tight security
reduction in the plain model, through a non-trivial combination of the
following techniques coming from different contexts:

o Katz-Wang's tightly secure Full-Domain Hash signatures in the
Random Oracle model.
e Two-sided lattice trapdoor techniques and Boyen's lattice signature.

o GSW-FHE/fully key-homomorphic encryption for fully homomorphic
encryption and attribute-based encryption for circuits.

@ Our signature scheme has both tight security reduction and short
signatures.

@ Our IBE scheme archives tight security and unbounded collusion in
the plain model for the first time among other lattice-based IBE
schemes.
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Towards Tightly Secure Lattice Short Signature and IBE

Xavier Boyen, Qinyi Li
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