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Motivations

1. Short lattice signature with tight security reduction w/o ROs.

Techniques Short Sig? Tight Reduction?

Lattice Mixing [Boy’10] 4 8

Prefix Guessing [MP’12] 4 8

Confined Guessing [BHJ+’13] 4 8

Two-Tier Sig [BKKP’15] 8 4

2. Adaptively and tightly secure lattice IBE w/o. ROs.

Techniques Tight Reduction?

Admissible Hash [CHKP’12] 8

Lattice Mixing [ABB’10] 8

Programmable Hash [ZCZ’16] 8
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Tight Security Reductions

Theorem (template)

If an adversary A (t, ε)-breaks the scheme Π in the defined security model,
there exists an algorithm B that (t ′, ε′)-breaks some computation problem
P where ε′ = ε/θ and t ′ = t + o(t) for θ ≥ 1.

θ measures tightness of reductions.

Security parameter λ, number of adversarial queries Q

Tight reduction: θ = O(1);
Almost tight reduction: θ = poly(λ);
Lose reduction: θ = poly(Q).

Why tight reductions?

In practice: a tighter reduction allows shorter security parameters and,
thus, higher efficiency.
In theory: a tight reduction shows hardness of two computational
problems is close.
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Our results

Fully, tightly secure short signature/IBE schemes w/o. RO from SIS/LWE
assumption and a secure pseudorandom function (PRF).

εPRF be the security level of a concrete PRF.

ε, ε′ be security levels of our signature scheme and IBE scheme.

εLWE, εSIS be the security levels of LWEn,q,α and SISn,q,β.

εSIS + εPRF ≈ ε/2 ; εLWE + εPRF ≈ ε′/2
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Digital Signatures

Algorithm:

. (sk, vk)← KeyGen(1λ)

. σ ← Sign(sk,m)

. Ver(vk,m, σ) =

{
1 accept

0 reject

Correctness:

. ∀(sk, vk)← KeyGen(1λ)

Ver (vk,m,Sign(sk,m)) = 1

Security Model:

(sk, vk)← KeyGen(1λ)
σi ← Sign(sk,mi )

vk−−−−−−−−−−−→
m1, . . . ,mQ←−−−−−−−−−−−
σ1, . . . , σQ−−−−−−−−−−−−→

Outputs (m∗, σ∗)
Wins if m∗ 6= mi

& Ver(vk,m∗, σ∗) = 1
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Our Method

We non-trivially combine the following techniques (from different
contexts):

Katz-Wang’s magic bit for tightly secure (full-domain hash)
signatures. [KW’03]

Two-sided lattice trapdoors. [GPV’08,ABB’10,Boy’10,MP’12]

Boyen’s short lattice signature (in the plain model). [Boy’10]

GSW-FHE/Fully key-homomorphic encryption. [GSW’13,BGG+14]
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Katz-Wang’s Magic Bit [KW’03]

An unpredictable bit bm ∈ {0, 1} associated with every m ∈M: e.g.
generated by a Pseudorandom Function (PRF)

bm = PRF(K ,m)

In real schemes:

Each m has two signatures: σb and σ1−b for b ∈ {0, 1};
Signer can produce both;
Only one of them is issued.

In security proofs:

Query Simulator can create σbm for m, but not σ1−bm .
(All queries can be answered.)

Forgery Simulator can solve problem for forgery (m∗, σ1−bm∗ ),
but fails for (m∗, σbm∗ ).
(Adversary chooses correctly with prob. ≈ 1/2.)
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Short Integer Solution (SIS) Problem and Trapdoors

Definition

Let q, n ≥ 2, m = O(n log q) and β > 0. Given random A ∈ Zn×m
q find a

non-zero “short” vector σ ∈ Zm, where ‖σ‖ ≤ β, such that

Aσ ≡ 0 (mod q)

. Hard without Trapdoor: If A is chosen randomly, finding a solution
x 6= 0 enables solving GapSVP problem with approximation factor
≈ β ·

√
n on any n-dimensional lattice.

. Easy with Trapdoor: There is an algorithm TrapGen that generates a
nearly random A and a trapdoor T . Using T one can find a “short”,
non-zero solution.

. GPV-Style Signature Schemes [GPV’08]

A trapdoor T serves as a signing key;
A valid solution σ serves as a signature.
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Two-Sided Lattice Trapdoors [ABB’10,Boy’10,MP’12]

Two-Sided Trapdoor

Let q, n ≥ 2, m = O(n log q), A,G ∈ Zn×m
q -matrix, secret low-norm

R ∈ Zm×m, publicly known trapdoor for G , and h ∈ Zq. Set

F = [A|AR + hG ] mod q

. Left trapdoor for real schemes:

If A has a trapdoor, F has a trapdoor for any h.

. Right trapdoor for proofs:

h 6= 0: “right” trapdoor is (R, hG )

Generate signatures for F .

h = 0: no trapdoor

Can not generate signatures.

A signature for F results in a SIS solution for A.
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Boyen’s Signature [Boy’10]

. KeyGen(1λ)

vk: random Zn×m
q -matrices A,A0,A1, . . . ,A`;

sk: A’s trapdoor T .

. Sign(sk,m)

m ∈ {0, 1}`; m’s i-th bit is mi ;

Uses “left” trapdoor T to find a “short” solution σ s.t.

Fσ =

[
A|A0 +

∑̀
i=1

miAi

]
σ = 0 (mod q)

. Ver(vk, σ,m)

Check if σ is “short” and non-zero;

Check if Fσ = 0.
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Proof Idea of Boyen’s Signature

A is a SIS challenge. Let h1, . . . , h` ∈ Zq be secret. For any querying
message m ∈ {0, 1}`, set

F = [A|ARm + (1 + Σ`
i=1mihi )G ]

= [A|ARm + H(m)G ]

Rm depends on m and is “short”, and

ARm + (1 + Σ`
i=1mihi )G ≈s A0 + Σ`

i=1miAi

Apply the principle of two-sided trapdoor:

H(m) = 0 Forgeries of m allows SIS solutions;
H(m) 6= 0 Generate signatures using “right” trapdoor.

Simulator hopes:

For all Q queries: H(m) 6= 0 (mod q), happens with prob. (1− 1/q)Q .
For forgery (σ,m): H(m) = 0 (mod q), happens with prob. 1/q.

Gives a loose reduction: θ ≈
(
(1− 1/q)Q · 1/q

)−1
= poly(Q).
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Magic Bit bm Comes to Play

Our Idea

b ∈ {0, 1}, bm = PRF(K ,m), “short” matrices Rm,R
′
m. Replace H(m) by

1− b − bm ∈ {0, 1}. Set (simulated) vk:

Fb = [A|ARm + (1− b − bm)G ]

F1−b = [A|AR ′m + (b − bm)G ]

As required by Katz-Wang proof:

. Generating only “one” signature: σbm from Fbm :
Can not produce σ1−bm since F1−bm looses trapdoor;
Allows answering all signing queries.

. “Two” valid signatures for m∗.

Forgery (σ∗,m∗): σ∗ =

{
σbm∗ Fail

σ1−bm∗ Solve SIS

bm∗ = PRF(K ,m∗) is unpredictable. With prob. ≈ 1/2, solve SIS.
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Embedding PRF into Fb

Magic bit bm = PRF(K ,m). For public message m and secret K , we
need to somehow create

ARm + PRF(K ,m)G

PRF(·, ·) can be expressed as a small-depth Boolean circuit:

CPRF : {0, 1}|K | × {0, 1}|m| → {0, 1}

ARm + PRF(K ,m)G is a ciphertext of FHE [GSW13]/ public key of
fully key-homomorphic encryption [BGG+14].
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Embedding PRF into Fb (cont.)

Let g(u, v) = w be a logical gate. Using evaluation algorithm of
GSW-FHE/fully key-homomorphic encryption, given

Au = ARu + uG ; Av = ARv + vG

one can deterministically compute unique matrix Aw = ARw + wG .

We “encrypt” PRF key K = k1k2, . . . , kt ∈ {0, 1}t as

Bki = ARki + kiG

We “encrypt” message bit mi by Cmi = ARmi + miG .

Using Bk1 , . . . ,Bkt and Cm1 , . . . ,Cm`
and circuit CPRF,

APRF,K ,m = ARm + PRF(K ,m)G

is publicly computable.
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Our Signature Scheme

. KeyGen(1λ)→ (vk, sk):

vk = (CPRF,A,A0,A1,Bk1 , . . . ,Bkt ,C0,C1) ; sk = (TA,K )

. Sign(sk,m)→ σ

Set bm = PRF(K ,m);
Evaluating APRF,K ,m = Eval(CPRF,Ak1 , . . . ,Akt ,Cm1 , . . . ,Cm`

);
Set Fbm = [A|A1−bm − APRF,K ,m] and use TA to output σ = σbm s.t.

Fbm · σ = 0 (mod q)

. Ver(vk,m, σ)→ 0/1

Check if σ is small and non-zero;
Check if F0 · σ = 0 (mod q) or F1 · σ = 0 (mod q)

? Using TA, one can generate signatures for Fbm and F1−bm . But only
“one” of them is issued.
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An IBE Scheme

Our signature is“Hash-and-Sign” signature. Following ideas of
[GPV08,ABB10,Boy10], we obtain an IBE scheme.

. KeyGen(Msk, id) There are “two” keys for one identity. We only give
“one” identity key skid,bid for Fbid , which is similar to our signature
scheme.

. Encrypt(Pub, id,Msg) We give two “dual-Regev” ciphrtexts for F0,F1

Ctx0 = s>0 · F0 + e>0 = s>0 [A|A1 + APRF,K ,id] + e>0

Ctx1 = s>1 · F1 + e>1 = s>1 [A|A0 + APRF,K ,id] + e>1

with adjusted noise vectors e0, e1.

. Decrypt(skid,Ctx) Decryptor uses skid to try both ciphertexts.
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Caveats

? Katz-Wang uses PRFs for making signing stateless.

? The state-of-art lattice-based PRFs, e.g. [BPR’12,BP’14], require
slightly stronger LWE assumptions.

? Want an efficient IBE scheme w/o ROs now? Pick selectively secure
schemes and do “complexity leveraging” [BB’04,BB’11].

?? DO take “leveraging slack” into account setting parameters!
?? Still more efficient than native adaptive security (usually)
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Conclusion

We proposed a lattice-based signature/IBE scheme with tight security
reduction in the plain model, through a non-trivial combination of the
following techniques coming from different contexts:

Katz-Wang’s tightly secure Full-Domain Hash signatures in the
Random Oracle model.

Two-sided lattice trapdoor techniques and Boyen’s lattice signature.

GSW-FHE/fully key-homomorphic encryption for fully homomorphic
encryption and attribute-based encryption for circuits.

Our signature scheme has both tight security reduction and short
signatures.

Our IBE scheme archives tight security and unbounded collusion in
the plain model for the first time among other lattice-based IBE
schemes.
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Towards Tightly Secure Lattice Short Signature and IBE
Xavier Boyen, Qinyi Li

Thank you!
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