Towards Tightly Secure Lattice Short Signature and Id-Based Encryption

Xavier Boyen Qinyi Li

QUT

Asiacrypt'16

2016-12-06

Queensland University of Technology Brishane Australia

1. Short lattice signature with tight security reduction w/o ROs.

2. Adaptively and tightly secure lattice IBE w/o. ROs.

Theorem (template)

If an adversary $A(t, \epsilon)$ -breaks the scheme Π in the defined security model, there exists an algorithm $\mathcal B$ that (t',ϵ') -breaks some computation problem P where $\epsilon' = \epsilon/\theta$ and $t' = t + o(t)$ for $\theta \geq 1$.

 θ measures tightness of reductions.

- Security parameter λ , number of adversarial queries Q
	- Tight reduction: $\theta = O(1)$;
	- Almost tight reduction: $\theta = \text{poly}(\lambda)$;
	- Lose reduction: $\theta = \text{poly}(Q)$.
- Why tight reductions?
	- In practice: a tighter reduction allows shorter security parameters and, thus, higher efficiency.
	- In theory: a tight reduction shows hardness of two computational problems is close.

Fully, tightly secure short signature/IBE schemes w/o. RO from SIS/LWE assumption and a secure pseudorandom function (PRF).

- \bullet ϵ_{PRF} be the security level of a concrete PRF.
- ϵ , ϵ' be security levels of our signature scheme and IBE scheme.
- \bullet ϵ_{LWE} , ϵ_{SIS} be the security levels of LWE_{n,a, α} and SIS_{n,a, β}.

$$
\epsilon_{\text{SIS}} + \epsilon_{\text{PRF}} \approx \epsilon/2 \quad ; \quad \epsilon_{\text{LWE}} + \epsilon_{\text{PRF}} \approx \epsilon'/2
$$

Digital Signatures

Algorithm:

$$
\triangleright \text{ (sk, vk)} \leftarrow \text{KeyGen}(1^{\lambda})
$$

$$
\triangleright \sigma \leftarrow \text{Sign}(\text{sk}, m)
$$

$$
\triangleright \text{Ver}(\text{vk}, m, \sigma) = \begin{cases} 1 & \text{accept} \\ 0 & \text{reject} \end{cases}
$$

Correctness:

 $\triangleright \ \forall (\mathsf{sk},\mathsf{vk}) \leftarrow \mathsf{KeyGen}(1^\lambda)$ $Ver (vk, m, Sign(sk, m)) = 1$

Security Model:

 $(\mathsf{sk}, \mathsf{vk}) \leftarrow \mathsf{KeyGen}(1^\lambda)$ $\sigma_i \leftarrow$ Sign(sk, m_i) <u>−−−−−−−−−−−−</u> m_1, \ldots, m_Q $\overrightarrow{\sigma_1,\ldots,\sigma_Q}$

Outputs (m^*, σ^*) Wins if $m^* \neq m_i$ & $\mathsf{Ver}(\mathsf{vk}, m^*, \sigma^*) = 1$ We non-trivially combine the following techniques (from different contexts):

- Katz-Wang's magic bit for tightly secure (full-domain hash) signatures. [KW'03]
- Two-sided lattice trapdoors. [GPV'08,ABB'10,Boy'10,MP'12]
- \bullet Boyen's short lattice signature (in the plain model). $[Boy'10]$
- $GSW-FHE/Fully$ key-homomorphic encryption. $[GSW'13, BGG+14]$

Katz-Wang's Magic Bit [KW'03]

• An unpredictable bit $b_m \in \{0, 1\}$ associated with every $m \in \mathcal{M}$: e.g. generated by a Pseudorandom Function (PRF)

 $b_m = \text{PRF}(K, m)$

• An unpredictable bit $b_m \in \{0,1\}$ associated with every $m \in \mathcal{M}$: e.g. generated by a Pseudorandom Function (PRF)

$$
b_m = \mathsf{PRF}(K,m)
$$

- In real schemes:
	- Each *m* has two signatures: σ_b and σ_{1-b} for $b \in \{0,1\}$;
	- Signer can produce both;
	- Only one of them is issued.

• An unpredictable bit $b_m \in \{0, 1\}$ associated with every $m \in \mathcal{M}$: e.g. generated by a Pseudorandom Function (PRF)

$$
b_m = \mathsf{PRF}(K,m)
$$

- In real schemes:
	- Each *m* has two signatures: σ_b and σ_{1-b} for $b \in \{0,1\}$;
	- Signer can produce both;
	- Only one of them is issued.
- In security proofs:
	- Query Simulator can create σ_{b_m} for m, but not σ_{1-b_m} . (All queries can be answered.)
	- Forgery Simulator can solve problem for forgery $(m^*, \sigma_{1-b_{m^*}})$, but fails for $(m^*, \sigma_{b_{m^*}})$. (Adversary chooses correctly with prob. $\approx 1/2$.)

Definition

Let $q, n \geq 2$, $m = O(n \log q)$ and $\beta > 0$. Given random $A \in \mathbb{Z}_q^{n \times m}$ find a non-zero "short" vector $\sigma \in \mathbb{Z}^m$, where $\|\sigma\| \leq \beta$, such that

 $A\sigma \equiv 0 \pmod{q}$

Definition

Let $q, n \geq 2$, $m = O(n \log q)$ and $\beta > 0$. Given random $A \in \mathbb{Z}_q^{n \times m}$ find a non-zero "short" vector $\sigma \in \mathbb{Z}^m$, where $\|\sigma\| \leq \beta$, such that

$$
A\sigma\equiv 0\pmod{q}
$$

 \triangleright Hard without Trapdoor: If A is chosen randomly, finding a solution $x \neq 0$ enables solving GapSVP problem with approximation factor $\begin{array}{l} \mathsf{x} \neq \mathsf{u} \, \mathsf{e} \ \mathsf{x} \, \beta \cdot \sqrt{\end{array}$ \overline{n} on any *n*-dimensional lattice.

Definition

$$
A\sigma\equiv 0\pmod{q}
$$

- \triangleright Hard without Trapdoor: If A is chosen randomly, finding a solution $x \neq 0$ enables solving GapSVP problem with approximation factor $\begin{array}{l} \mathsf{x} \neq \mathsf{u} \, \mathsf{e} \ \mathsf{x} \, \beta \cdot \sqrt{\end{array}$ \overline{n} on any *n*-dimensional lattice.
- \triangleright Easy with Trapdoor: There is an algorithm TrapGen that generates a nearly random A and a trapdoor T . Using T one can find a "short", non-zero solution.

Definition

$$
A\sigma\equiv 0\pmod{q}
$$

- \triangleright Hard without Trapdoor: If A is chosen randomly, finding a solution $x \neq 0$ enables solving GapSVP problem with approximation factor $\begin{array}{l} \mathsf{x} \neq \mathsf{u} \, \mathsf{e} \ \mathsf{x} \, \beta \cdot \sqrt{\end{array}$ \overline{n} on any *n*-dimensional lattice.
- \triangleright Easy with Trapdoor: There is an algorithm TrapGen that generates a nearly random A and a trapdoor T . Using T one can find a "short", non-zero solution.
- **▷ GPV-Style Signature Schemes [GPV'08]**

Definition

$$
A\sigma\equiv 0\pmod{q}
$$

- \triangleright Hard without Trapdoor: If A is chosen randomly, finding a solution $x \neq 0$ enables solving GapSVP problem with approximation factor $\begin{array}{l} \mathsf{x} \neq \mathsf{u} \, \mathsf{e} \ \mathsf{x} \, \beta \cdot \sqrt{\end{array}$ \overline{n} on any *n*-dimensional lattice.
- \triangleright Easy with Trapdoor: There is an algorithm TrapGen that generates a nearly random A and a trapdoor T . Using T one can find a "short", non-zero solution.
- **▷ GPV-Style Signature Schemes [GPV'08]**
	- A trapdoor T serves as a signing key;

Definition

$$
A\sigma\equiv 0\pmod{q}
$$

- \triangleright Hard without Trapdoor: If A is chosen randomly, finding a solution $x \neq 0$ enables solving GapSVP problem with approximation factor $\begin{array}{l} \mathsf{x} \neq \mathsf{u} \, \mathsf{e} \ \mathsf{x} \, \beta \cdot \sqrt{\end{array}$ \overline{n} on any *n*-dimensional lattice.
- \triangleright Easy with Trapdoor: There is an algorithm TrapGen that generates a nearly random A and a trapdoor T . Using T one can find a "short", non-zero solution.
- **▷ GPV-Style Signature Schemes** [GPV'08]
	- A trapdoor T serves as a signing key;
	- A valid solution σ serves as a signature.

Two-Sided Lattice Trapdoors [ABB'10,Boy'10,MP'12]

Two-Sided Lattice Trapdoors [ABB'10,Boy'10,MP'12]

Two-Sided Trapdoor

Let $q, n \geq 2$, $m = O(n \log q)$, $A, G \in \mathbb{Z}_q^{n \times m}$ -matrix, secret low-norm $R\in \mathbb{Z}^{m\times m}$, publicly known trapdoor for G , and $h\in \mathbb{Z}_q.$ Set

 $F = [A|AR + hG]$ mod q

Two-Sided Lattice Trapdoors [ABB'10,Boy'10,MP'12]

Two-Sided Trapdoor

Let $q, n \geq 2$, $m = O(n \log q)$, $A, G \in \mathbb{Z}_q^{n \times m}$ -matrix, secret low-norm $R\in \mathbb{Z}^{m\times m}$, publicly known trapdoor for G , and $h\in \mathbb{Z}_q.$ Set

 $F = [A|AR + hG] \text{ mod } q$

- \triangleright Left trapdoor for real schemes:
	- If A has a trapdoor, F has a trapdoor for any h .
- \triangleright Right trapdoor for *proofs*:
	- $h \neq 0$: "right" trapdoor is (R, hG)
		- Generate signatures for F .
	- $h = 0$: no trapdoor
		- Can not generate signatures.
		- \bullet A signature for F results in a SIS solution for A.

Boyen's Signature [Boy'10]

- \triangleright $\,$ Key $\,$ Gen (1^{λ})
	- vk: random $\mathbb{Z}_q^{n \times m}$ -matrices $A, A_0, A_1, \ldots, A_\ell;$
	- \bullet sk: A's trapdoor T.
- \triangleright Sign(sk, m)
	- $m \in \{0,1\}^{\ell}; \; m's \; i\text{-th bit is} \; m_i;$
	- Uses "left" trapdoor T to find a "short" solution σ s.t.

$$
F\sigma = \left[A|A_0 + \sum_{i=1}^{\ell} m_i A_i\right]\sigma = 0 \pmod{q}
$$

 \triangleright Ver(vk, σ , *m*)

- Check if σ is "short" and non-zero:
- Check if $F\sigma = 0$.

A is a SIS challenge. Let $h_1, \ldots, h_\ell \in \mathbb{Z}_q$ be secret. For any querying message $m\in\{0,1\}^\ell$, set

$$
F = [A|AR_m + (1 + \sum_{i=1}^{\ell} m_i h_i)G]
$$

= [A|AR_m + H(m)G]

 R_m depends on m and is "short", and

$$
AR_m + (1 + \Sigma_{i=1}^{\ell} m_i h_i) G \approx_s A_0 + \Sigma_{i=1}^{\ell} m_i A_i
$$

A is a SIS challenge. Let $h_1, \ldots, h_\ell \in \mathbb{Z}_q$ be secret. For any querying message $m\in\{0,1\}^\ell$, set

$$
F = [A|AR_m + (1 + \sum_{i=1}^{\ell} m_i h_i)G]
$$

= [A|AR_m + H(m)G]

 R_m depends on m and is "short", and

$$
AR_m + (1 + \Sigma_{i=1}^{\ell} m_i h_i) G \approx_s A_0 + \Sigma_{i=1}^{\ell} m_i A_i
$$

• Apply the principle of two-sided trapdoor:

A is a SIS challenge. Let $h_1, \ldots, h_\ell \in \mathbb{Z}_q$ be secret. For any querying message $m\in\{0,1\}^\ell$, set

$$
F = [A|AR_m + (1 + \Sigma_{i=1}^{\ell} m_i h_i)G]
$$

= [A|AR_m + H(m)G]

 R_m depends on m and is "short", and

$$
AR_m + (1 + \Sigma_{i=1}^{\ell} m_i h_i) G \approx_s A_0 + \Sigma_{i=1}^{\ell} m_i A_i
$$

• Apply the principle of two-sided trapdoor: $H(m) = 0$ Forgeries of m allows SIS solutions;

A is a SIS challenge. Let $h_1, \ldots, h_\ell \in \mathbb{Z}_q$ be secret. For any querying message $m\in\{0,1\}^\ell$, set

$$
F = [A|AR_m + (1 + \sum_{i=1}^{\ell} m_i h_i)G]
$$

= [A|AR_m + H(m)G]

 R_m depends on m and is "short", and

$$
AR_m + (1 + \Sigma_{i=1}^{\ell} m_i h_i) G \approx_s A_0 + \Sigma_{i=1}^{\ell} m_i A_i
$$

• Apply the principle of two-sided trapdoor:

 $H(m) = 0$ Forgeries of m allows SIS solutions; $H(m) \neq 0$ Generate signatures using "right" trapdoor.

A is a SIS challenge. Let $h_1, \ldots, h_\ell \in \mathbb{Z}_q$ be secret. For any querying message $m\in\{0,1\}^\ell$, set

$$
F = [A|AR_m + (1 + \sum_{i=1}^{\ell} m_i h_i)G]
$$

= [A|AR_m + H(m)G]

 R_m depends on m and is "short", and

$$
AR_m + (1 + \Sigma_{i=1}^{\ell} m_i h_i) G \approx_s A_0 + \Sigma_{i=1}^{\ell} m_i A_i
$$

• Apply the principle of two-sided trapdoor:

 $H(m) = 0$ Forgeries of m allows SIS solutions; $H(m) \neq 0$ Generate signatures using "right" trapdoor.

• Simulator *hopes*:

A is a SIS challenge. Let $h_1, \ldots, h_\ell \in \mathbb{Z}_q$ be secret. For any querying message $m\in\{0,1\}^\ell$, set

$$
F = [A|AR_m + (1 + \sum_{i=1}^{\ell} m_i h_i)G]
$$

= [A|AR_m + H(m)G]

 R_m depends on m and is "short", and

$$
AR_m + (1 + \Sigma_{i=1}^{\ell} m_i h_i) G \approx_s A_0 + \Sigma_{i=1}^{\ell} m_i A_i
$$

• Apply the principle of two-sided trapdoor:

 $H(m) = 0$ Forgeries of m allows SIS solutions;

 $H(m) \neq 0$ Generate signatures using "right" trapdoor.

• Simulator *hopes*:

For all Q queries: $H(m) \neq 0$ (mod q), happens with prob. $(1 - 1/q)^Q$.

A is a SIS challenge. Let $h_1, \ldots, h_\ell \in \mathbb{Z}_q$ be secret. For any querying message $m\in\{0,1\}^\ell$, set

$$
F = [A|AR_m + (1 + \Sigma_{i=1}^{\ell} m_i h_i)G]
$$

= [A|AR_m + H(m)G]

 R_m depends on m and is "short", and

$$
AR_m + (1 + \Sigma_{i=1}^{\ell} m_i h_i) G \approx_s A_0 + \Sigma_{i=1}^{\ell} m_i A_i
$$

• Apply the principle of two-sided trapdoor:

 $H(m) = 0$ Forgeries of m allows SIS solutions;

 $H(m) \neq 0$ Generate signatures using "right" trapdoor.

• Simulator *hopes*:

- For all Q queries: $H(m) \neq 0$ (mod q), happens with prob. $(1 1/q)^Q$.
- For forgery (σ, m) : $H(m) = 0$ (mod q), happens with prob. $1/q$.

A is a SIS challenge. Let $h_1, \ldots, h_\ell \in \mathbb{Z}_q$ be secret. For any querying message $m\in\{0,1\}^\ell$, set

$$
F = [A|AR_m + (1 + \Sigma_{i=1}^{\ell} m_i h_i)G]
$$

= [A|AR_m + H(m)G]

 R_m depends on m and is "short", and

$$
AR_m + (1 + \Sigma_{i=1}^{\ell} m_i h_i) G \approx_s A_0 + \Sigma_{i=1}^{\ell} m_i A_i
$$

• Apply the principle of two-sided trapdoor:

 $H(m) = 0$ Forgeries of m allows SIS solutions;

 $H(m) \neq 0$ Generate signatures using "right" trapdoor.

• Simulator *hopes*:

- For all Q queries: $H(m) \neq 0$ (mod q), happens with prob. $(1 1/q)^Q$.
- For forgery (σ, m) : $H(m) = 0$ (mod q), happens with prob. $1/q$.
- Gives a loose reduction: $\theta \approx ((1-1/q)^Q \cdot 1/q)^{-1} = \text{poly}(Q)$.

Our Idea

 $b \in \{0,1\}$, $b_m = \mathsf{PRF}(K,m)$, "short" matrices R_m, R'_m . Replace $H(m)$ by $1 - b - b_m \in \{0, 1\}$. Set (simulated) vk:

$$
F_b = [A|AR_m + (1 - b - b_m)G]
$$

$$
F_{1-b}=[A|AR_m' + (b-b_m)G]
$$

Our Idea

 $b \in \{0,1\}$, $b_m = \mathsf{PRF}(K,m)$, "short" matrices R_m, R'_m . Replace $H(m)$ by $1 - b - b_m \in \{0, 1\}$. Set (simulated) vk:

$$
F_b = [A|AR_m + (1 - b - b_m)G]
$$

$$
F_{1-b}=[A|AR_m' + (b-b_m)G]
$$

As required by Katz-Wang proof:

Our Idea

 $b \in \{0,1\}$, $b_m = \mathsf{PRF}(K,m)$, "short" matrices R_m, R'_m . Replace $H(m)$ by $1 - b - b_m \in \{0, 1\}$. Set (simulated) vk:

$$
F_b = [A|AR_m + (1 - b - b_m)G]
$$

$$
F_{1-b}=[A|AR_m' + (b-b_m)G]
$$

As required by Katz-Wang proof:

- \triangleright Generating only "one" signature: σ_{b_m} from F_{b_m} :
	- Can not produce σ_{1-b_m} since F_{1-b_m} looses trapdoor;
	- Allows answering all signing queries.

Our Idea

 $b \in \{0,1\}$, $b_m = \mathsf{PRF}(K,m)$, "short" matrices R_m, R'_m . Replace $H(m)$ by $1 - b - b_m \in \{0, 1\}$. Set (simulated) vk:

$$
F_b = [A|AR_m + (1 - b - b_m)G]
$$

$$
F_{1-b}=[A|AR_m' + (b-b_m)G]
$$

As required by Katz-Wang proof:

- \triangleright Generating only "one" signature: σ_{b_m} from F_{b_m} :
	- Can not produce σ_{1-b_m} since F_{1-b_m} looses trapdoor;
	- Allows answering all signing queries.
- ⊳ "Two" valid signatures for m^* .

• Forgery
$$
(\sigma^*, m^*)
$$
: $\sigma^* = \begin{cases} \sigma_{b_{m^*}} & \text{fail} \\ \sigma_{1-b_{m^*}} & \text{Solve SIS} \end{cases}$

 $b_{m^*} = \text{PRF}(K, m^*)$ is unpredictable. With prob. $\approx 1/2$, solve SIS.

• Magic bit $b_m = PRF(K, m)$. For public message m and secret K, we need to somehow create

 AR_m + PRF(K, m)G

• Magic bit $b_m = PRF(K, m)$. For public message m and secret K, we need to somehow create

$$
AR_m+\mathsf{PRF}(K,m)G
$$

• PRF (\cdot, \cdot) can be expressed as a small-depth Boolean circuit:

$$
\mathcal{C}_{\mathsf{PRF}}: \{0,1\}^{|\mathcal{K}|} \times \{0,1\}^{|\mathcal{m}|} \rightarrow \{0,1\}
$$

• Magic bit $b_m = PRF(K, m)$. For public message m and secret K, we need to somehow create

$$
AR_m+\mathsf{PRF}(K,m)G
$$

 \bullet PRF(\cdot , \cdot) can be expressed as a small-depth Boolean circuit:

$$
C_{\mathsf{PRF}}: \{0,1\}^{|\mathcal{K}|} \times \{0,1\}^{|\mathcal{m}|} \to \{0,1\}
$$

• $AR_m + PRF(K, m)G$ is a ciphertext of FHE [GSW13]/ public key of fully key-homomorphic encryption $[BGG+14]$.

Embedding PRF into F_b (cont.)

• Let $g(u, v) = w$ be a logical gate. Using evaluation algorithm of GSW-FHE/fully key-homomorphic encryption, given

$$
A_u = AR_u + uG \quad ; \quad A_v = AR_v + vG
$$

one can deterministically compute unique matrix $A_w = AR_w + wG$.

Embedding PRF into F_b (cont.)

• Let $g(u, v) = w$ be a logical gate. Using evaluation algorithm of GSW-FHE/fully key-homomorphic encryption, given

$$
A_u = AR_u + uG \quad ; \quad A_v = AR_v + vG
$$

one can deterministically compute unique matrix $A_w = AR_w + wG$. We "encrypt" PRF key $K = k_1 k_2, \ldots, k_t \in \{0,1\}^t$ as

$$
B_{k_i}=AR_{k_i}+k_iG
$$

Embedding PRF into F_b (cont.)

• Let $g(u, v) = w$ be a logical gate. Using evaluation algorithm of GSW-FHE/fully key-homomorphic encryption, given

$$
A_u = AR_u + uG \quad ; \quad A_v = AR_v + vG
$$

one can deterministically compute unique matrix $A_w = AR_w + wG$. We "encrypt" PRF key $K = k_1 k_2, \ldots, k_t \in \{0,1\}^t$ as

$$
B_{k_i}=AR_{k_i}+k_iG
$$

• We "encrypt" message bit m_i by $C_{m_i} = AR_{m_i} + m_iG$.

Embedding PRF into F_b (cont.)

• Let $g(u, v) = w$ be a logical gate. Using evaluation algorithm of GSW-FHE/fully key-homomorphic encryption, given

$$
A_u = AR_u + uG \quad ; \quad A_v = AR_v + vG
$$

one can deterministically compute unique matrix $A_w = AR_w + wG$. We "encrypt" PRF key $K = k_1 k_2, \ldots, k_t \in \{0,1\}^t$ as

$$
B_{k_i}=AR_{k_i}+k_iG
$$

- We "encrypt" message bit m_i by $C_{m_i} = AR_{m_i} + m_iG$.
- Using B_{k_1},\ldots,B_{k_t} and $\mathcal{C}_{m_1},\ldots,\mathcal{C}_{m_\ell}$ and circuit $\mathcal{C}_{\mathsf{PRF}},$

$$
A_{\text{PRF},K,m} = AR_m + \text{PRF}(K,m)G
$$

is publicly computable.

Our Signature Scheme

$$
\triangleright \ \text{KeyGen}(1^{\lambda}) \rightarrow (\text{vk}, \text{sk})
$$

$$
\mathsf{vk} = (C_{\mathsf{PRF}}, A, A_0, A_1, B_{k_1}, \ldots, B_{k_t}, C_0, C_1) ; \mathsf{sk} = (T_A, K)
$$

$$
\triangleright \ \mathsf{Sign}(\mathsf{sk}, m) \to \sigma
$$

- Set $b_m = \text{PRF}(K, m)$;
- Evaluating $A_{\text{PRF},K,m} = \text{Eval}(C_{\text{PRF}}, A_{k_1}, \ldots, A_{k_t}, C_{m_1}, \ldots, C_{m_\ell});$
- Set $\mathcal{F}_{b_m}=[A|A_{1-b_m}-A_{\mathsf{PRF},\mathcal{K},m}]$ and use \mathcal{T}_A to output $\sigma=\sigma_{b_m}$ s.t.

$$
F_{b_m} \cdot \sigma = 0 \pmod{q}
$$

 \triangleright Ver(vk, m, σ) \rightarrow 0/1

- Check if σ is small and non-zero;
- Check if $F_0 \cdot \sigma = 0$ (mod q) or $F_1 \cdot \sigma = 0$ (mod q)
- \star Using $\mathcal{T}_\mathcal{A}$, one can generate signatures for \mathcal{F}_{b_m} and $\mathcal{F}_{1-b_m}.$ But only "one" of them is issued.

 \triangleright KeyGen(Msk, id) There are "two" keys for one identity. We only give "one" identity key sk_{id, bid} for $F_{b_{id}}$, which is similar to our signature scheme.

- \triangleright KeyGen(Msk, id) There are "two" keys for one identity. We only give "one" identity key sk_{id, bid} for $F_{b_{id}}$, which is similar to our signature scheme.
- \triangleright Encrypt(Pub, id, Msg) We give two "dual-Regev" ciphrtexts for F_0, F_1

$$
Ctx_0 = s_0^{\top} \cdot F_0 + e_0^{\top} = s_0^{\top} [A|A_1 + A_{PRF,K,id}] + e_0^{\top}
$$

$$
Ctx_1 = s_1^{\top} \cdot F_1 + e_1^{\top} = s_1^{\top} [A|A_0 + A_{PRF,K,id}] + e_1^{\top}
$$

with adjusted noise vectors e_0, e_1 .

- \triangleright KeyGen(Msk, id) There are "two" keys for one identity. We only give "one" identity key sk_{id, bid} for $F_{b_{id}}$, which is similar to our signature scheme.
- \triangleright Encrypt(Pub, id, Msg) We give two "dual-Regev" ciphrtexts for F_0, F_1

$$
Ctx_0 = s_0^{\top} \cdot F_0 + e_0^{\top} = s_0^{\top} [A|A_1 + A_{PRF,K,id}] + e_0^{\top}
$$

$$
Ctx_1 = s_1^{\top} \cdot F_1 + e_1^{\top} = s_1^{\top} [A|A_0 + A_{PRF,K,id}] + e_1^{\top}
$$

with adjusted noise vectors e_0, e_1 .

 \triangleright Decrypt(sk_{id}, Ctx) Decryptor uses sk_{id} to try both ciphertexts.

- \star Katz-Wang uses PRFs for making signing stateless.
- \star The state-of-art lattice-based PRFs, e.g. [BPR'12,BP'14], require slightly stronger LWE assumptions.
- \star Want an efficient IBE scheme w/o ROs now? Pick selectively secure schemes and do "complexity leveraging" [BB'04,BB'11].
	- $\star\star$ DO take "leveraging slack" into account setting parameters!
	- $\star\star$ Still more efficient than native adaptive security (usually)

Conclusion

- We proposed a lattice-based signature/IBE scheme with tight security reduction in the plain model, through a non-trivial combination of the following techniques coming from different contexts:
	- Katz-Wang's tightly secure Full-Domain Hash signatures in the Random Oracle model.
	- Two-sided lattice trapdoor techniques and Boyen's lattice signature.
	- GSW-FHE/fully key-homomorphic encryption for fully homomorphic encryption and attribute-based encryption for circuits.
- Our signature scheme has both tight security reduction and short signatures.
- Our IBE scheme archives tight security and unbounded collusion in the plain model for the first time among other lattice-based IBE schemes.

Towards Tightly Secure Lattice Short Signature and IBE Xavier Boyen, Qinyi Li

Thank you!

Queensland University of Technology Brisbane Australia