Towards Tightly Secure Lattice Short Signature and Id-Based Encryption

Xavier Boyen

Qinyi Li

QUT

Asiacrypt'16

2016-12-06

Queensland University of Technology Brisbane Australia 1. Short lattice signature with tight security reduction w/o ROs.

Techniques	Short Sig?	Tight Reduction?
Lattice Mixing [Boy'10]	 ✓ 	×
Prefix Guessing [MP'12]	 Image: A set of the set of the	×
Confined Guessing [BHJ+'13]	 Image: A set of the set of the	×
Two-Tier Sig [BKKP'15]	×	 Image: A set of the set of the

2. Adaptively and tightly secure lattice IBE w/o. ROs.

Techniques	Tight Reduction?
Admissible Hash [CHKP'12]	×
Lattice Mixing [ABB'10]	×
Programmable Hash [ZCZ'16]	×

Theorem (template)

If an adversary $\mathcal{A}(t, \epsilon)$ -breaks the scheme Π in the defined security model, there exists an algorithm \mathcal{B} that (t', ϵ') -breaks some computation problem P where $\epsilon' = \epsilon/\theta$ and t' = t + o(t) for $\theta \ge 1$.

- θ measures tightness of reductions.
- Security parameter λ , number of adversarial queries Q
 - Tight reduction: $\theta = O(1)$;
 - Almost tight reduction: $\theta = poly(\lambda)$;
 - Lose reduction: $\theta = poly(Q)$.
- Why tight reductions?
 - In practice: a tighter reduction allows shorter security parameters and, thus, higher efficiency.
 - In theory: a tight reduction shows hardness of two computational problems is close.

Fully, tightly secure short signature/IBE schemes w/o. RO from SIS/LWE assumption and a secure pseudorandom function (PRF).

- ϵ_{PRF} be the security level of a concrete PRF.
- ϵ , ϵ' be security levels of our signature scheme and IBE scheme.
- ϵ_{LWE} , ϵ_{SIS} be the security levels of $\text{LWE}_{n,q,\alpha}$ and $\text{SIS}_{n,q,\beta}$.

$$\epsilon_{\rm SIS} + \epsilon_{\rm PRF} \approx \epsilon/2$$
 ; $\epsilon_{\rm LWE} + \epsilon_{\rm PRF} \approx \epsilon'/2$

Digital Signatures

Algorithm:

$$\triangleright (\mathsf{sk}, \mathsf{vk}) \leftarrow \mathsf{KeyGen}(1^{\lambda})$$
$$\triangleright \sigma \leftarrow \mathsf{Sign}(\mathsf{sk}, m)$$
$$\triangleright \mathsf{Ver}(\mathsf{vk}, m, \sigma) = \begin{cases} 1 & \mathsf{accept} \\ 0 & \mathsf{reject} \end{cases}$$

Correctness:

 $\begin{tabular}{ll} & \forall (\mathsf{sk},\mathsf{vk}) \leftarrow \mathsf{KeyGen}(1^\lambda) \\ & \mathsf{Ver}\left(\mathsf{vk},m,\mathsf{Sign}(\mathsf{sk},m)\right) = 1 \end{tabular} \end{tabular}$

Security Model:

Outputs (m^*, σ^*) Wins if $m^* \neq m_i$ & Ver(vk, m^*, σ^*) = 1 We non-trivially combine the following techniques (from different contexts):

- Katz-Wang's magic bit for tightly secure (full-domain hash) signatures. [KW'03]
- Two-sided lattice trapdoors. [GPV'08,ABB'10,Boy'10,MP'12]
- Boyen's short lattice signature (in the plain model). [Boy'10]
- GSW-FHE/Fully key-homomorphic encryption. [GSW'13,BGG+14]

Katz-Wang's Magic Bit [KW'03]

An unpredictable bit b_m ∈ {0, 1} associated with every m ∈ M: e.g. generated by a Pseudorandom Function (PRF)

 $b_m = \mathsf{PRF}(K, m)$

Katz-Wang's Magic Bit [KW'03]

An unpredictable bit b_m ∈ {0, 1} associated with every m ∈ M: e.g. generated by a Pseudorandom Function (PRF)

$$b_m = \mathsf{PRF}(K, m)$$

- In real schemes:
 - Each *m* has *two* signatures: σ_b and σ_{1-b} for $b \in \{0, 1\}$;
 - Signer can produce both;
 - Only one of them is issued.

An unpredictable bit b_m ∈ {0, 1} associated with every m ∈ M: e.g. generated by a Pseudorandom Function (PRF)

$$b_m = \mathsf{PRF}(K, m)$$

- In real schemes:
 - Each *m* has *two* signatures: σ_b and σ_{1-b} for $b \in \{0, 1\}$;
 - Signer can produce both;
 - Only one of them is issued.
- In security proofs:
 - Query Simulator can create σ_{b_m} for *m*, but not σ_{1-b_m} . (All queries can be answered.)
 - Forgery Simulator can solve problem for forgery $(m^*, \sigma_{1-b_{m^*}})$, but fails for $(m^*, \sigma_{b_{m^*}})$. (Adversary chooses correctly with prob. $\approx 1/2$.)

Definition

Let $q, n \ge 2$, $m = O(n \log q)$ and $\beta > 0$. Given random $A \in \mathbb{Z}_q^{n \times m}$ find a non-zero "short" vector $\sigma \in \mathbb{Z}^m$, where $\|\sigma\| \le \beta$, such that

 $A\sigma \equiv 0 \pmod{q}$

Definition

Let $q, n \geq 2$, $m = O(n \log q)$ and $\beta > 0$. Given random $A \in \mathbb{Z}_q^{n \times m}$ find a non-zero "short" vector $\sigma \in \mathbb{Z}^m$, where $\|\sigma\| \leq \beta$, such that

$$A\sigma \equiv 0 \pmod{q}$$

▷ Hard without Trapdoor: If A is chosen randomly, finding a solution $x \neq 0$ enables solving GapSVP problem with approximation factor $\approx \beta \cdot \sqrt{n}$ on any *n*-dimensional lattice.

Definition

$$A\sigma \equiv 0 \pmod{q}$$

- ▷ Hard without Trapdoor: If A is chosen randomly, finding a solution $x \neq 0$ enables solving GapSVP problem with approximation factor $\approx \beta \cdot \sqrt{n}$ on any *n*-dimensional lattice.
- ▷ Easy with Trapdoor: There is an algorithm TrapGen that generates a nearly random A and a trapdoor T. Using T one can find a "short", non-zero solution.

Definition

$$A\sigma \equiv 0 \pmod{q}$$

- ▷ Hard without Trapdoor: If A is chosen randomly, finding a solution $x \neq 0$ enables solving GapSVP problem with approximation factor $\approx \beta \cdot \sqrt{n}$ on any *n*-dimensional lattice.
- ▷ Easy with Trapdoor: There is an algorithm TrapGen that generates a nearly random A and a trapdoor T. Using T one can find a "short", non-zero solution.
- GPV-Style Signature Schemes [GPV'08]

Definition

$$A\sigma \equiv 0 \pmod{q}$$

- ▷ Hard without Trapdoor: If A is chosen randomly, finding a solution $x \neq 0$ enables solving GapSVP problem with approximation factor $\approx \beta \cdot \sqrt{n}$ on any *n*-dimensional lattice.
- ▷ Easy with Trapdoor: There is an algorithm TrapGen that generates a nearly random A and a trapdoor T. Using T one can find a "short", non-zero solution.
- GPV-Style Signature Schemes [GPV'08]
 - A trapdoor T serves as a signing key;

Definition

$$A\sigma \equiv 0 \pmod{q}$$

- ▷ Hard without Trapdoor: If A is chosen randomly, finding a solution $x \neq 0$ enables solving GapSVP problem with approximation factor $\approx \beta \cdot \sqrt{n}$ on any *n*-dimensional lattice.
- ▷ Easy with Trapdoor: There is an algorithm TrapGen that generates a nearly random A and a trapdoor T. Using T one can find a "short", non-zero solution.
- GPV-Style Signature Schemes [GPV'08]
 - A trapdoor T serves as a signing key;
 - A valid solution σ serves as a signature.

Two-Sided Lattice Trapdoors [ABB'10,Boy'10,MP'12]

Two-Sided Lattice Trapdoors [ABB'10, Boy'10, MP'12]

Two-Sided Trapdoor

Let $q, n \ge 2$, $m = O(n \log q)$, $A, G \in \mathbb{Z}_q^{n \times m}$ -matrix, secret low-norm $R \in \mathbb{Z}^{m \times m}$, publicly known trapdoor for G, and $h \in \mathbb{Z}_q$. Set

 $F = [A|AR + hG] \mod q$

Two-Sided Lattice Trapdoors [ABB'10, Boy'10, MP'12]

Two-Sided Trapdoor

Let $q, n \ge 2$, $m = O(n \log q)$, $A, G \in \mathbb{Z}_q^{n \times m}$ -matrix, secret low-norm $R \in \mathbb{Z}^{m \times m}$, publicly known trapdoor for G, and $h \in \mathbb{Z}_q$. Set

$$F = [A|AR + hG] \mod q$$

- ▷ Left trapdoor for *real schemes*:
 - If A has a trapdoor, F has a trapdoor for any h.
- Right trapdoor for proofs:
 - $h \neq 0$: "right" trapdoor is (R, hG)
 - Generate signatures for *F*.
 - h = 0: no trapdoor
 - Can not generate signatures.
 - A signature for F results in a SIS solution for A.

Boyen's Signature [Boy'10]

- \triangleright KeyGen (1^{λ})
 - vk: random $\mathbb{Z}_q^{n \times m}$ -matrices $A, A_0, A_1, \dots, A_\ell$;
 - sk: A's trapdoor T.
- ▷ Sign(sk, m)
 - $m \in \{0,1\}^{\ell}$; m's *i*-th bit is m_i ;
 - Uses "left" trapdoor T to find a "short" solution σ s.t.

$$F\sigma = \left[A|A_0 + \sum_{i=1}^{\ell} m_i A_i
ight]\sigma = 0 \pmod{q}$$

 \triangleright Ver(vk, σ , m)

- Check if σ is "short" and non-zero;
- Check if $F\sigma = 0$.

• A is a SIS challenge. Let $h_1, \ldots, h_\ell \in \mathbb{Z}_q$ be secret. For any querying message $m \in \{0, 1\}^\ell$, set

$$F = [A|AR_m + (1 + \sum_{i=1}^{\ell} m_i h_i)G]$$
$$= [A|AR_m + H(m)G]$$

 R_m depends on m and is "short", and

$$AR_m + (1 + \Sigma_{i=1}^{\ell} m_i h_i)G \approx_{\mathbf{s}} A_0 + \Sigma_{i=1}^{\ell} m_i A_i$$

• A is a SIS challenge. Let $h_1, \ldots, h_\ell \in \mathbb{Z}_q$ be secret. For any querying message $m \in \{0, 1\}^\ell$, set

$$F = [A|AR_m + (1 + \Sigma_{i=1}^{\ell} m_i h_i)G]$$
$$= [A|AR_m + H(m)G]$$

 R_m depends on m and is "short", and

$$AR_m + (1 + \Sigma_{i=1}^{\ell} m_i h_i)G \approx_{\mathbf{s}} A_0 + \Sigma_{i=1}^{\ell} m_i A_i$$

• Apply the principle of two-sided trapdoor:

• A is a SIS challenge. Let $h_1, \ldots, h_\ell \in \mathbb{Z}_q$ be secret. For any querying message $m \in \{0, 1\}^\ell$, set

$$F = [A|AR_m + (1 + \sum_{i=1}^{\ell} m_i h_i)G]$$
$$= [A|AR_m + H(m)G]$$

 R_m depends on m and is "short", and

$$AR_m + (1 + \Sigma_{i=1}^{\ell} m_i h_i)G \approx_{\mathbf{s}} A_0 + \Sigma_{i=1}^{\ell} m_i A_i$$

• Apply the principle of two-sided trapdoor: H(m) = 0 Forgeries of m allows SIS solutions;

• A is a SIS challenge. Let $h_1, \ldots, h_\ell \in \mathbb{Z}_q$ be secret. For any querying message $m \in \{0, 1\}^\ell$, set

$$F = [A|AR_m + (1 + \Sigma_{i=1}^{\ell} m_i h_i)G]$$
$$= [A|AR_m + H(m)G]$$

 R_m depends on m and is "short", and

$$AR_m + (1 + \Sigma_{i=1}^{\ell} m_i h_i)G \approx_{\mathbf{s}} A_0 + \Sigma_{i=1}^{\ell} m_i A_i$$

• Apply the principle of two-sided trapdoor:

H(m) = 0 Forgeries of *m* allows SIS solutions; $H(m) \neq 0$ Generate signatures using "right" trapdoor.

• A is a SIS challenge. Let $h_1, \ldots, h_\ell \in \mathbb{Z}_q$ be secret. For any querying message $m \in \{0, 1\}^\ell$, set

$$F = [A|AR_m + (1 + \sum_{i=1}^{\ell} m_i h_i)G]$$
$$= [A|AR_m + H(m)G]$$

 R_m depends on m and is "short", and

$$AR_m + (1 + \Sigma_{i=1}^{\ell} m_i h_i)G \approx_{\mathbf{s}} A_0 + \Sigma_{i=1}^{\ell} m_i A_i$$

 Apply the principle of two-sided trapdoor: *H(m)* = 0 Forgeries of *m* allows SIS solutions; *H(m)* ≠ 0 Generate signatures using "right" trapdoor.

• Simulator *hopes*:

A is a SIS challenge. Let h₁,..., h_ℓ ∈ Z_q be secret. For any querying message m ∈ {0,1}^ℓ, set

$$F = [A|AR_m + (1 + \sum_{i=1}^{\ell} m_i h_i)G]$$
$$= [A|AR_m + H(m)G]$$

 R_m depends on m and is "short", and

$$AR_m + (1 + \Sigma_{i=1}^{\ell} m_i h_i)G \approx_{\mathbf{s}} A_0 + \Sigma_{i=1}^{\ell} m_i A_i$$

• Apply the principle of two-sided trapdoor: H(m) = 0 Forgeries of *m* allows SIS solutions; $H(m) \neq 0$ Generate signatures using "right" trapdoor.

• Simulator *hopes*:

• For all Q queries: $H(m) \neq 0 \pmod{q}$, happens with prob. $(1 - 1/q)^Q$.

• A is a SIS challenge. Let $h_1, \ldots, h_\ell \in \mathbb{Z}_q$ be secret. For any querying message $m \in \{0, 1\}^\ell$, set

$$F = [A|AR_m + (1 + \sum_{i=1}^{\ell} m_i h_i)G]$$
$$= [A|AR_m + H(m)G]$$

 R_m depends on m and is "short", and

$$AR_m + (1 + \Sigma_{i=1}^{\ell} m_i h_i)G \approx_{\mathbf{s}} A_0 + \Sigma_{i=1}^{\ell} m_i A_i$$

• Apply the principle of two-sided trapdoor: H(m) = 0 Forgeries of *m* allows SIS solutions; $H(m) \neq 0$ Generate signatures using "right" trapdoor.

• Simulator *hopes*:

- For all Q queries: $H(m) \neq 0 \pmod{q}$, happens with prob. $(1 1/q)^Q$.
- For forgery (σ, m) : $H(m) = 0 \pmod{q}$, happens with prob. 1/q.

• A is a SIS challenge. Let $h_1, \ldots, h_\ell \in \mathbb{Z}_q$ be secret. For any querying message $m \in \{0, 1\}^\ell$, set

$$F = [A|AR_m + (1 + \sum_{i=1}^{\ell} m_i h_i)G]$$
$$= [A|AR_m + H(m)G]$$

 R_m depends on m and is "short", and

$$AR_m + (1 + \Sigma_{i=1}^{\ell} m_i h_i)G \approx_{\mathbf{s}} A_0 + \Sigma_{i=1}^{\ell} m_i A_i$$

Apply the principle of two-sided trapdoor:
 H(m) = 0 Forgeries of m allows SIS solutions;
 H(m) ≠ 0 Generate signatures using "right" trapdoor.

• Simulator hopes:

- For all Q queries: $H(m) \neq 0 \pmod{q}$, happens with prob. $(1 1/q)^Q$.
- For forgery (σ, m) : $H(m) = 0 \pmod{q}$, happens with prob. 1/q.
- Gives a loose reduction: $\theta \approx \left((1-1/q)^Q \cdot 1/q\right)^{-1} = \operatorname{poly}(Q).$

Our Idea

 $b \in \{0,1\}$, $b_m = \mathsf{PRF}(K, m)$, "short" matrices R_m, R'_m . Replace H(m) by $1 - b - b_m \in \{0,1\}$. Set (simulated) vk:

$$F_b = [A|AR_m + (1-b-b_m)G]$$

$$F_{1-b} = [A|AR'_m + (b - b_m)G]$$

Our Idea

 $b \in \{0,1\}$, $b_m = \mathsf{PRF}(K,m)$, "short" matrices R_m, R'_m . Replace H(m) by $1 - b - b_m \in \{0,1\}$. Set (simulated) vk:

$$F_b = [A|AR_m + (1 - b - b_m)G]$$

$$F_{1-b} = [A|AR'_m + (b-b_m)G]$$

As required by Katz-Wang proof:

Our Idea

 $b \in \{0, 1\}$, $b_m = \mathsf{PRF}(K, m)$, "short" matrices R_m, R'_m . Replace H(m) by $1 - b - b_m \in \{0, 1\}$. Set (simulated) vk:

$$F_b = [A|AR_m + (1 - b - b_m)G]$$

$$F_{1-b} = [A|AR'_m + (b-b_m)G]$$

As required by Katz-Wang proof:

- ▷ Generating only "one" signature: σ_{b_m} from F_{b_m} :
 - Can not produce σ_{1-b_m} since F_{1-b_m} looses trapdoor;
 - Allows answering all signing queries.

Our Idea

 $b \in \{0, 1\}$, $b_m = \mathsf{PRF}(K, m)$, "short" matrices R_m, R'_m . Replace H(m) by $1 - b - b_m \in \{0, 1\}$. Set (simulated) vk:

$$F_b = [A|AR_m + (1 - b - b_m)G]$$

$$F_{1-b} = [A|AR'_m + (b - b_m)G]$$

As required by Katz-Wang proof:

- ▷ Generating only "one" signature: σ_{b_m} from F_{b_m} :
 - Can not produce σ_{1-b_m} since F_{1-b_m} looses trapdoor;
 - Allows answering all signing queries.
- ▷ "Two" valid signatures for m^* .

• Forgery
$$(\sigma^*, m^*)$$
: $\sigma^* = \begin{cases} \sigma_{b_{m^*}} & \text{Fail} \\ \sigma_{1-b_{m^*}} & \text{Solve SIS} \end{cases}$

• $b_{m^*} = \mathsf{PRF}(K, m^*)$ is unpredictable. With prob. $\approx 1/2$, solve SIS.

• Magic bit $b_m = \mathsf{PRF}(K, m)$. For public message m and secret K, we need to somehow create

 $AR_m + PRF(K, m)G$

• Magic bit $b_m = \mathsf{PRF}(K, m)$. For public message m and secret K, we need to somehow create

$$AR_m + PRF(K, m)G$$

• $\mathsf{PRF}(\cdot, \cdot)$ can be expressed as a small-depth Boolean circuit:

$$C_{\mathsf{PRF}}: \{0,1\}^{|\mathcal{K}|} imes \{0,1\}^{|m|} o \{0,1\}$$

• Magic bit $b_m = \mathsf{PRF}(K, m)$. For public message m and secret K, we need to somehow create

$$AR_m + PRF(K, m)G$$

• $\mathsf{PRF}(\cdot, \cdot)$ can be expressed as a small-depth Boolean circuit:

$$C_{\mathsf{PRF}}: \{0,1\}^{|\mathcal{K}|} imes \{0,1\}^{|m|} o \{0,1\}$$

 AR_m + PRF(K, m)G is a ciphertext of FHE [GSW13]/ public key of fully key-homomorphic encryption [BGG+14].

 Let g(u, v) = w be a logical gate. Using evaluation algorithm of GSW-FHE/fully key-homomorphic encryption, given

$$A_u = AR_u + uG$$
 ; $A_v = AR_v + vG$

one can deterministically compute unique matrix $A_w = AR_w + wG$.

 Let g(u, v) = w be a logical gate. Using evaluation algorithm of GSW-FHE/fully key-homomorphic encryption, given

$$A_u = AR_u + uG$$
 ; $A_v = AR_v + vG$

one can deterministically compute unique matrix $A_w = AR_w + wG$. • We "encrypt" PRF key $K = k_1k_2, \ldots, k_t \in \{0, 1\}^t$ as

$$B_{k_i} = AR_{k_i} + k_i G$$

 Let g(u, v) = w be a logical gate. Using evaluation algorithm of GSW-FHE/fully key-homomorphic encryption, given

$$A_u = AR_u + uG$$
 ; $A_v = AR_v + vG$

one can *deterministically* compute unique matrix $A_w = AR_w + wG$. • We "encrypt" PRF key $K = k_1k_2, \ldots, k_t \in \{0, 1\}^t$ as

$$B_{k_i} = AR_{k_i} + k_i G$$

• We "encrypt" message bit m_i by $C_{m_i} = AR_{m_i} + m_iG$.

 Let g(u, v) = w be a logical gate. Using evaluation algorithm of GSW-FHE/fully key-homomorphic encryption, given

$$A_u = AR_u + uG$$
 ; $A_v = AR_v + vG$

one can deterministically compute unique matrix $A_w = AR_w + wG$. • We "encrypt" PRF key $K = k_1k_2, \ldots, k_t \in \{0, 1\}^t$ as

$$B_{k_i} = AR_{k_i} + k_i G$$

- We "encrypt" message bit m_i by $C_{m_i} = AR_{m_i} + m_iG$.
- Using B_{k_1}, \ldots, B_{k_t} and $C_{m_1}, \ldots, C_{m_\ell}$ and circuit C_{PRF} ,

$$A_{\mathsf{PRF},K,m} = AR_m + \mathsf{PRF}(K,m)G$$

is publicly computable.

Our Signature Scheme

$$\triangleright \ \mathsf{KeyGen}(1^{\lambda}) \to (\mathsf{vk},\mathsf{sk}):$$

$$vk = (C_{PRF}, A, A_0, A_1, B_{k_1}, \dots, B_{k_t}, C_0, C_1)$$
; $sk = (T_A, K)$

$$\triangleright \; \mathsf{Sign}(\mathsf{sk}, m) \to \sigma$$

- Set $b_m = \mathsf{PRF}(K, m)$;
- Evaluating $A_{\mathsf{PRF},K,m} = \mathsf{Eval}(C_{\mathsf{PRF}}, A_{k_1}, \dots, A_{k_t}, C_{m_1}, \dots, C_{m_\ell});$
- Set $F_{b_m} = [A|A_{1-b_m} A_{\mathsf{PRF},K,m}]$ and use T_A to output $\sigma = \sigma_{b_m}$ s.t.

$$F_{b_m} \cdot \sigma = 0 \pmod{q}$$

 \triangleright Ver(vk, m, σ) \rightarrow 0/1

- Check if σ is small and non-zero;
- Check if $F_0 \cdot \sigma = 0 \pmod{q}$ or $F_1 \cdot \sigma = 0 \pmod{q}$
- * Using T_A , one can generate signatures for F_{b_m} and F_{1-b_m} . But only "one" of them is issued.

▷ KeyGen(Msk, id) There are "two" keys for one identity. We only give "one" identity key $sk_{id,b_{id}}$ for $F_{b_{id}}$, which is similar to our signature scheme.

- ▷ KeyGen(Msk, id) There are "two" keys for one identity. We only give "one" identity key sk_{id,bid} for F_{bid}, which is similar to our signature scheme.
- \triangleright Encrypt(Pub, id, Msg) We give two "dual-Regev" ciphrtexts for F_0, F_1

$$\begin{aligned} \mathsf{Ctx}_0 &= s_0^\top \cdot \mathsf{F}_0 + e_0^\top = s_0^\top [\mathsf{A}|\mathsf{A}_1 + \mathsf{A}_{\mathsf{PRF},\mathsf{K},\mathsf{id}}] + e_0^\top \\ \mathsf{Ctx}_1 &= s_1^\top \cdot \mathsf{F}_1 + e_1^\top = s_1^\top [\mathsf{A}|\mathsf{A}_0 + \mathsf{A}_{\mathsf{PRF},\mathsf{K},\mathsf{id}}] + e_1^\top \end{aligned}$$

with adjusted noise vectors e_0, e_1 .

- ▷ KeyGen(Msk, id) There are "two" keys for one identity. We only give "one" identity key sk_{id,bid} for F_{bid}, which is similar to our signature scheme.
- \triangleright Encrypt(Pub, id, Msg) We give two "dual-Regev" ciphrtexts for F_0, F_1

$$\begin{aligned} \mathsf{Ctx}_0 &= s_0^\top \cdot F_0 + e_0^\top = s_0^\top [A|A_1 + A_{\mathsf{PRF},K,\mathsf{id}}] + e_0^\top \\ \mathsf{Ctx}_1 &= s_1^\top \cdot F_1 + e_1^\top = s_1^\top [A|A_0 + A_{\mathsf{PRF},K,\mathsf{id}}] + e_1^\top \end{aligned}$$

with adjusted noise vectors e_0, e_1 .

▷ Decrypt(sk_{id}, Ctx) Decryptor uses sk_{id} to try both ciphertexts.

- ★ Katz-Wang uses PRFs for making signing stateless.
- * The state-of-art lattice-based PRFs, e.g. [BPR'12,BP'14], require slightly stronger LWE assumptions.
- * Want an efficient IBE scheme w/o ROs now? Pick selectively secure schemes and do "complexity leveraging" [BB'04,BB'11].
 - $\star\star$ DO take "leveraging slack" into account setting parameters!
 - ****** Still more efficient than native adaptive security (usually)

Conclusion

- We proposed a lattice-based signature/IBE scheme with tight security reduction in the plain model, through a non-trivial combination of the following techniques coming from different contexts:
 - Katz-Wang's tightly secure Full-Domain Hash signatures in the Random Oracle model.
 - Two-sided lattice trapdoor techniques and Boyen's lattice signature.
 - GSW-FHE/fully key-homomorphic encryption for fully homomorphic encryption and attribute-based encryption for circuits.
- Our signature scheme has both tight security reduction and short signatures.
- Our IBE scheme archives tight security and unbounded collusion in the plain model for the first time among other lattice-based IBE schemes.

Towards Tightly Secure Lattice Short Signature and IBE Xavier Boyen, Qinyi Li

Thank you!

Queensland University of Technology Brisbane Australia