Optimization of LPN Solving Algorithms

Sonia Bogos Serge Vaudenay

EPFL

08 December 2016

Now Hiring!

mailto: job_lasec@epfl.ch

Now Hiring!

mailto: job_lasec@epfl.ch

 LPN can be defined as a noisy system of linear equations in the binary domain

- LPN can be defined as a noisy system of linear equations in the binary domain
- believed to be quantum resistant

- LPN can be defined as a noisy system of linear equations in the binary domain
- believed to be quantum resistant
- used in authentication protocols and cryptosystems

- LPN can be defined as a noisy system of linear equations in the binary domain
- believed to be quantum resistant
- used in authentication protocols and cryptosystems
- special case of LWE, but its hardness is not proven so far

- LPN can be defined as a noisy system of linear equations in the binary domain
- believed to be quantum resistant
- used in authentication protocols and cryptosystems
- special case of LWE, but its hardness is not proven so far

Best way to study its hardness is by improving the algorithms that solve it

Our Results

- analyse the existing LPN algorithms and study its building blocks
- improve the theory behind the covering code reduction
- optimise the order and the parameters used in LPN solving algorithms
- improve the best existing algorithms from ASIACRYPT'14 and EUROCRYPT'16

Outline

- 1 LPN
- 2 Code Reduction
- Our Algorithm
- Results

Outline

- 1 LPN
- Code Reduction
- Our Algorithm
- Results

LPN Oracle
secret random vector s
, L

LPN Oracle secret random vector \mathbf{s} $c_1 = \langle v_1, \mathbf{s} \rangle \oplus \mathbf{d}_1$

```
LPN Oracle secret random vector \mathbf{s} c_1 = \langle v_1, \mathbf{s} \rangle \oplus \mathbf{d}_1 random vector
```

```
LPN Oracle secret random vector \mathbf{s} c_1 = \langle v_1, \mathbf{s} \rangle \oplus d_1 noise random vector
```


Definition (LPN)

Given independent queries from the LPN oracle, find the secret s.

LPN Solving Algorithm

Definition (LPN solving algorithm)

We say that an algorithm ${\mathcal M}$ solves the LPN problem if

$$\Pr[\mathcal{M} \text{ recovers the secret } \mathbf{s}] \geq \frac{1}{2},$$

The performance of \mathcal{M} is measured by the running time t, memory m and number of queries n from the LPN oracle

Define $\delta = \Pr[\mathbf{d_i} = 0] - \Pr[\mathbf{d_i} = 1]$ as the **noise bias**

- reduce to a secret s' of $k' \le k$ bits
- recover the secret s'
- update the queries & repeat the steps

- reduce to a secret s' of $k' \le k$ bits through **reduction techniques**
- recover the secret s'
- update the queries & repeat the steps

- reduce to a secret s' of $k' \le k$ bits through **reduction techniques**
- recover the secret s' through solving techniques
- update the queries & repeat the steps

- reduce to a secret s' of $k' \le k$ bits through **reduction techniques**
- recover the secret s' through solving techniques
- update the queries & repeat the steps until the entire s is recovered

- reduce to a secret s' of $k' \le k$ bits through **reduction techniques**
- recover the secret s' through solving techniques
- update the queries & repeat the steps until the entire s is recovered

$$LPN_s \rightarrow reduction \rightarrow LPN_{s_i} \rightarrow ... \rightarrow LPN_{s_i} \rightarrow reduction \rightarrow S_i$$

To recover a secret s of k bits:

- reduce to a secret s' of $k' \le k$ bits through reduction techniques
- recover the secret s' through solving techniques
- update the queries & repeat the steps until the entire s is recovered

$$LPN_s \rightarrow \text{reduction} \rightarrow LPN_{s_1} \rightarrow \dots \rightarrow LPN_{s_i} \rightarrow \text{solve} \rightarrow s_i$$

Optimise the use of the reduction techniques

Reduction Techniques

- sparse-secret
- partition-reduce(b)
- *χor-reduce(b)*
- drop-reduce(b)
- code-reduce(k, k', params)
- guess-secret(b, w)

Reduction Techniques

- sparse-secret
- partition-reduce(b)
- *χor-reduce(b)*
- drop-reduce(b)
- code-reduce(k, k', params)
- guess-secret(b, w)

Reduction Techniques

- sparse-secret
- partition-reduce(b)
- *χor-reduce(b)*
- drop-reduce(b)
- code-reduce(k, k', params)
- guess-secret(b, w)

Keep track of the:

- secret size
- number of queries
- noise bias
- secret bias

	<i>V</i> ₁		C ₁	
	V ₂ V ₃	• • •	c_2	
	<i>V</i> ₃	• • •	c ₃	
	<i>V</i> ₄		c ₂ c ₃ c ₂	
	V ₄ V ₅	• • •	C ₅	
	<i>V</i> ₆	• • •	C 6	
	V_{n-2}	• • •	C _{n-2}	
	V_{n-1}		C _{n-1}	
	Vn		Cn	

$$c_i = \langle v_i, s \rangle \oplus d_i$$

$$c_i = \langle v_i, s \rangle \oplus d_i$$

Change the distribution of the secret

Reduction sparse-secret

Change the distribution of the secret

- from s being uniformly distributed
- to an s where each bit has the same distribution as the noise

Reduction sparse-secret

Change the distribution of the secret

- from s being uniformly distributed
- to an s where each bit has the same distribution as the noise

Complexity:
$$O(\min_{\chi \in \mathbb{N}} (k(n-k) \lceil \frac{k}{\chi} \rceil + k^3 + k\chi 2^{\chi}))$$

Find collisions on a window of b bits

Find collisions on a window of b bits

- group queries in equivalence classes
- xor each pair of queries from the same equivalence class

$$c_i \oplus c_i = \langle v_i \oplus v_i, s \rangle \oplus d_i \oplus d_i$$

Find collisions on a window of b bits

- group queries in equivalence classes
- xor each pair of queries from the same equivalence class

Complexity:
$$O(k \cdot \max(n, \frac{n(n-1)}{2^{b+1}}))$$

$$c_i \oplus c_j = \langle v_i \oplus v_j, s \rangle \oplus d_i \oplus d_j$$

Find collisions on a window of b bits

- group queries in equivalence classes
- xor each pair of queries from the same equivalence class

Complexity: $O(k \cdot \max(n, \frac{n(n-1)}{2^{b+1}}))$

When $n \approx 1 + 2^{b+1}$, the number of queries stay constant

Keep only the queries with 0 on a window of b bits

Keep only the queries with 0 on a window of b bits

Keep only the queries with 0 on a window of b bits

Keep only the queries with 0 on a window of b bits Complexity: $O(n(1 + \frac{1}{2} + ... + \frac{1}{2^{b-1}}))$

Reduction code-reduce

Introduced at ASIACRYPT'14 [GJL]

Use a linear code C[k,k',D] with generator matrix G, where $g=g'G\in\mathcal{C}$ Approximate each vector v_i to the nearest neighbour in the code \mathcal{C}

Reduction code-reduce

$$c_{i} = \langle v_{i}, \mathbf{s} \rangle \oplus \mathbf{d}_{i}$$

$$= \langle g, s \rangle \oplus \langle v_{i} - g, s \rangle \oplus d_{i}$$

$$= \langle g'G, s \rangle \oplus \langle v_{i} - g, s \rangle \oplus d_{i}$$

$$= \langle g', sG^{\mathsf{T}} \rangle \oplus \langle v_{i} - g, s \rangle \oplus d_{i}$$

Introduced at ASIACRYPT'14 [GJL]

Use a linear code C[k,k',D] with generator matrix G, where $g=g'G\in C$ Approximate each vector v_i to the nearest neighbour in the code C

Reduction code-reduce

Introduced at ASIACRYPT'14 [GJL]

Use a linear code C[k,k',D] with generator matrix G, where $g=g'G\in C$ Approximate each vector v_i to the nearest neighbour in the code C Complexity: $O(k\cdot n)$

Solving Technique

Define

$$f(x) = \sum_{i} 1_{v_i = x} (-1)^{\langle v_i, s \rangle \oplus d_i}$$

and apply the Walsh Hadamard Transform (WHT) to obtain

$$\hat{f}(v) = \sum_{x} (-1)^{\langle v, x \rangle} f(x) = \sum_{i} (-1)^{\langle v_i, s+v \rangle \oplus d_i}$$

 $|\hat{f}(s)|$ is large; In order to be the largest value in the table of \hat{f} , we require certain amount of queries

Complexity: $O(k2^k \frac{\log_2 n+1}{2} + kn)$, when WHT is applied for a secret of k bits on n queries

Outline

- 1 LPN
- 2 Code Reduction
- Our Algorithm
- A Results

Bias of the Code Reduction

For code-reduce we have

$$c_i = \langle v_i, s \rangle \oplus d_i = \langle g', s' \rangle \oplus \langle v_i - g, s \rangle \oplus d_i$$

Bias of the Code Reduction

For code-reduce we have

$$c_i = \langle v_i, s \rangle \oplus d_i = \langle g', s' \rangle \oplus \langle v_i - g, s \rangle \oplus d_i$$

$$\begin{split} \operatorname{bc} &= E((-1)^{\langle v_i - g, s \rangle}) = \sum_{e \in \{0,1\}^k} \Pr[v_i - g = e] E((-1)^{\langle e, s \rangle}) \\ &= E\left(\delta_s^{HW(v_i - g)}\right), \end{split}$$

where δ_s is the secret bias

Bias of the Code Reduction

For code-reduce we have

$$c_i = \langle v_i, s \rangle \oplus d_i = \langle g', s' \rangle \oplus \langle v_i - g, s \rangle \oplus d_i$$

$$\begin{aligned} \operatorname{bc} &= E((-1)^{\langle v_i - g, s \rangle}) = \sum_{e \in \{0,1\}^k} \Pr[v_i - g = e] E((-1)^{\langle e, s \rangle}) \\ &= E\left(\delta_s^{\mathsf{HW}(v_i - g)}\right), \end{aligned}$$

where δ_s is the secret bias We analyse:

- perfect codes
- quasi-perfect codes
- random codes

Perfect Codes

• Repetition code $[k, 1, \frac{k-1}{2}]$ with k odd

$$bc = \sum_{w=0}^{\frac{k-1}{2}} \frac{1}{2^{k-1}} \binom{k}{w} \delta_s^w$$

• Golay code [23, 12, 7]

bc =
$$2^{-11} \sum_{w=0}^{3} {23 \choose w} \delta_s^w$$

• Hamming code $[2^\ell-1,2^\ell-\ell,3]$

$$bc = 2^{-\ell} \sum_{w=0}^{1} \binom{2^{\ell}-1}{w} \delta_s^w$$

Not every code C[k, k', D] is perfect or quasi-perfect

Not every code C[k, k', D] is perfect or quasi-perfect

 \downarrow

Concatenate codes

Not every code C[k, k', D] is perfect or quasi-perfect

Concatenate codes

Take the \mathcal{C} [k,k',D] code as the concatenation of \mathcal{C}_1 [$k-\ell,k'-\ell',D_1$] and \mathcal{C}_2 [ℓ,ℓ',D_2] with bc = bc₁·bc₂

Not every code C[k, k', D] is perfect or quasi-perfect

Concatenate codes

Take the \mathcal{C} [k,k',D] code as the concatenation of \mathcal{C}_1 [$k-\ell,k'-\ell',D_1$] and \mathcal{C}_2 [ℓ,ℓ',D_2] with bc = bc₁ · bc₂

Computation:

- compute the biases for perfect, quasi-perfect and random codes
- $\bullet \text{ for each } [k,k',D], \text{ check if } \mathrm{bc}[k,k',D] < \mathrm{bc}[k-\ell,k'-\ell',D_1] \cdot \mathrm{bc}[\ell,\ell',D_2]$

Outline

- Our Algorithm

LPN Solving Automaton

LPN solving algorithms = chains of reductions + WHT

$$\mathsf{LPN}_{\$} \to \overline{\mathsf{reduction}} \to \mathsf{LPN}_{\$_1} \to \ldots \to \mathsf{LPN}_{\$_j} \to \overline{\mathsf{solve}} \to \$_i$$

LPN Solving Automaton

LPN solving algorithms = chains of reductions + WHT

$$\mathsf{LPN}_{S} \to \overline{\mathsf{reduction}} \to \mathsf{LPN}_{S_1} \to \ldots \to \mathsf{LPN}_{S_i} \to \overline{\mathsf{solve}} \to \overline{\mathsf{solve}}$$

Construct a graph of all possible reduction chains

- the vertex stores the secret size and the number of queries
- the edge stores the bias change for a reduction

Construct a graph of all possible reduction chains

- the vertex stores the secret size and the number of queries
- the edge stores the bias change for a reduction

Find the reductions that optimize the bias

Construct a graph of all possible reduction chains

- the vertex stores the secret size and the number of queries
- the edge stores the bias change for a reduction

Find the reductions that optimize the bias

The **time complexity** of a chain is the sum of the complexities of each reduction step + cost of WHT

Construct a graph of all possible reduction chains

- the vertex stores the secret size and the number of queries
- the edge stores the bias change for a reduction

Find the reductions that optimize the bias

The **time complexity** of a chain is the sum of the complexities of each reduction step + cost of WHT

Use max-complexity as an approximation for the time complexity

Construct a graph of all possible reduction chains

- the vertex stores the secret size and the number of queries
- the edge stores the bias change for a reduction

Find the reductions that optimize the bias

The **time complexity** of a chain is the sum of the complexities of each reduction step + cost of WHT

Use max-complexity as an approximation for the time complexity

Find the chain with the smallest max-complexity and compute its total time complexity

Find the chain with the smallest max-complexity and compute its total time complexity

Outline

- Results

Results

(k,τ)	ASIACRYPT'14 [GJL]	EUROCRYPT'16 [ZJW]	our results
(512, 0.125)	81.90	80.09	78.84
(532, 0.125)	88.62	82.17	81.02
(592, 0.125)	97.71	89.32	87.57

Table: Logarithmic time complexity to solve LPN (in bit operations)

k - secret size

 $\boldsymbol{\tau}$ - noise level

Results

τ	k						
	32	48	64	100	256	512	768
0.05	13.89	14.52	16.04	20.47	36.75	57.77	76.63
0.1	15.04	18.58	21.58	27.61	46.75	73.68	98.97
0.125	15.66	19.29	22.94	28.91	49.90	78.85	105.89
0.2	17.01	21.25	24.42	32.06	56.31	89.04	121.04
0.25	18.42	22.34	26.86	32.94	59.47	94.66	127.35

Table: Logarithmic time complexity to solve LPN

Results

τ	k						
	32	48	64	100	256	512	768
0.05	13.89	14.52	16.04	20.47	36.75	57.77	76.63
0.1	15.04	18.58	21.58	27.61	46.75	73.68	98.97
0.125	15.66	19.29	22.94	28.91	49.90	78.85	105.89
0.2	17.01	21.25	24.42	32.06	56.31	89.04	121.04
0.25	18.42	22.34	26.86	32.94	59.47	94.66	127.35

Table: Logarithmic time complexity to solve LPN

Conclusion

- Create an algorithm that automatizes the LPN solving algorithms
- Improve the best existing results
- New reduction techniques can be integrated later on

Thank you for your kind attention!