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Motivation

@ LPN can be defined as a noisy system of linear equations in the binary
domain

@ believed to be quantum resistant
@ used in authentication protocols and cryptosystems

@ special case of LWE, but its hardness is not proven so far

Best way to study its hardness is by
improving the algorithms that solve it
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Our Results

@ analyse the existing LPN algorithms and study its building blocks
@ improve the theory behind the covering code reduction

@ optimise the order and the parameters used in LPN solving algorithms

@ improve the best existing algorithms from ASIACRYPT’14 and
EUROCRYPT'16

Sonia Bogos, Serge Vaudenay Optimization of LPN Solving Algorithms 08.12.2016 4127



Outline

(% JIN

Q Code Reduction

@ Our Algorithm

@ Results

Sonia Bogos, Serge Vaudenay Optimization of LPN Solving Algorithms



Outline

(% JIN

Sonia Bogos, Serge Vaudenay Optimization of LPN Solving Algorithms



Learning Parity with Noise (LPN)

r-—-———"~=—=—=7—=7—=7—7"=—7—7—77%— A

LPN Oracle

Sonia Bogos, Serge Vaudenay Optimization of LPN Solving Algorithms



Learning Parity with Noise (LPN)

r-—-———"~=—=—=7—=7—=7—7"=—7—7—77%— A

LPN Oracle

| |
I |
| I
: secret random vector s :
I |
| I
| |
| |

Sonia Bogos, Serge Vaudenay Optimization of LPN Solving Algorithms



Learning Parity with Noise (LPN)

‘PN omde

secret random vector s

|
|
|
|
|
| C1 = <V1,S> @dl
|
|
|

Sonia Bogos, Serge Vaudenay Optimization of LPN Solving Algorithms

08.12.2016

7127



Learning Parity with Noise (LPN)

Sonia Bogos, Serge Vaudenay Optimization of LPN Solving Algorithms

r LPN Oracle

secret random vector s
C1 = <V1,S> @dl

random vector

08.12.2016

7127



Learning Parity with Noise (LPN)

Sonia Bogos, Serge Vaudenay Optimization of LPN Solving Algorithms

r LPN Oracle

secret random vector s
C1 = <V1,S> @dl

08.12.2016

7127



Learning Parity with Noise (LPN)

r LPN Oracle

secret random vector s

|
:
| —t> (Vl Cl)
| )

| C1 = <V1,S> @dl

|
|
|

Sonia Bogos, Serge Vaudenay Optimization of LPN Solving Algorithms 08.12.2016 7127



Learning Parity with Noise (LPN)
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Learning Parity with Noise (LPN)

r LPN Oracle

secret random vector s

: Ci:<Vi,S>@di (Vi’Ci)
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Learning Parity with Noise (LPN)

r LPN Oracle I
|
|
|

secret random vector s

: Ci:<Vi,S>@di (VhCi)

Definition (LPN)
Given independent queries from the LPN oracle, find the secret s.
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LPN Solving Algorithm

Definition (LPN solving algorithm)

We say that an algorithm M solves the LPN problem if

Pr[M recovers the secret s] >

N

The performance of M is measured by the running time t, memory m and
number of queries n from the LPN oracle

Define = Pr[d; = 0] — Pr[d; = 1] as the noise bias
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General Structure

To recover a secret s of k bits:
@ reduce to a secret s’ of k' < k bits
@ recover the secret s’

@ update the queries & repeat the steps
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General Structure

To recover a secret s of k bits:
@ reduce to a secret s’ of k’ < k bits through reduction techniques
@ recover the secret s’ through solving techniques
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General Structure

To recover a secret s of k bits:
@ reduce to a secret s’ of k’ < k bits through reduction techniques
@ recover the secret s’ through solving techniques

@ update the queries & repeat the steps until the entire s is recovered

LPN, — [reduction] — LPNg— ... — LPNy— — Si

Optimise the use of the reduction techniques
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Reduction Technigues

sparse-secret
partition-reduce(b)
xor-reduce(b)
drop-reduce(b)
code-reduce(k k', params)

guess-secret(b,w)
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Reduction Technigues

@ sparse-secret

® partition-reduce(b)

® xor-reduce(b)

@ drop-reduce(b)

@ code-reduce(k,k’, params)

® guess-secret(b,w)
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Reduction Technigues

Keep track of the:
sparse-secret

e ° i
partition-reduce(b) secret size

@ number of queries

drop-reduce(b) @ noise bias

°
°
® xor-reduce(b)
°
° @ secret bias

code-reduce(k k', params)

® guess-secret(b,w)
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Reduction sparse-secret

Vi -+ [Cq
Vo R [
V3 -+ [c3
V4 R [
Vs -+ |cs
Vg -~ |Cg

Vo2 - |C.J
Vi1 -+ |Cod
Vi <o |Cp
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Reduction sparse-secret

Vo R [
V3 -+ [c3
V4 - [eo

Vn72 B Cn-Z
Vn—l cee Cn_1
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Reduction sparse-secret

( Vi ce |Cp Ci:<Vi,S>@di
Vo o |cy
V3 -~ |C3
Va - |cy

Vn72 B Cn-Z
Vn—l cee Cn_1
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Reduction sparse-secret
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Reduction sparse-secret
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Change the distribution of the secret
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Reduction sparse-secret
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Change the distribution of the secret
@ from s being uniformly distributed

@ to an s where each bit has the same distribution as the noise
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Reduction sparse-secret
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Change the distribution of the secret
@ from s being uniformly distributed

@ to an s where each bit has the same distribution as the noise
Complexity: O(minyen(k(n —k) [%] +k3+kx2X))
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Reduction xor-reduce

>x
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Find collisions on a window of b bits
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Reduction xor-reduce

X

N

% e CIERLE 0] Ci=(vis)dd
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Find collisions on a window of b bits
@ group queries in equivalence classes

@ xor each pair of queries from the same equivalence class
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Reduction xor-reduce
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Find collisions on a window of b bits
@ group queries in equivalence classes

@ xor each pair of queries from the same equivalence class

Complexity: O(k - max(n, %))
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Reduction xor-reduce

k—b

N
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Find collisions on a window of b bits
@ group queries in equivalence classes

@ xor each pair of queries from the same equivalence class

Complexity: O(k - max(n, %))

When n ~ 1+ 2°*1, the number of queries stay constant
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Reduction drop-reduce
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Keep only the queries with 0 on a window of b bits
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Reduction drop-reduce
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Keep only the queries with 0 on a window of b bits
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Reduction drop-reduce
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Keep only the queries with 0 on a window of b bits
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Reduction drop-reduce

T
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Keep only the queries with 0 on a window of b bits
Complexity: O(n(1+3+...4 51))
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Reduction code-reduce
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Introduced at ASIACRYPT'14 [GJL]
Use a linear code C[k,k’,D] with generator matrix G, where g =g'G € C
Approximate each vector v; to the nearest neighbour in the code C
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Reduction code-reduce
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Reduction code-reduce

k/
N
4 N\
. 1111011 B TG) Ci:<Vi,S>EBdi
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1[0[1 1 I e - .
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n 0l0[2[1] - 0
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1]o[1[1 1
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Introduced at ASIACRYPT'14 [GJL]

Use a linear code C[k,k’,D] with generator matrix G, where g =g'G € C
Approximate each vector v; to the nearest neighbour in the code C
Complexity: O(k -n)
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Solving Technique

Define

f(x) = z 1Vi:x(—1)<vi75>€Bdi
i
and apply the Walsh Hadamard Transform (WHT) to obtain

fu) = Y ()i = 3 (e

|f(s)| is large; In order to be the largest value in the table of f, we require
certain amount of queries

Complexity: O(k2K 221+ kn), when WHT is applied for a secret of k bits on
n queries
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a Code Reduction
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Bias of the Code Reduction

For code-reduce we have

ci = (vi,s)®di = (g',s) & (vi—g,s) B
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Bias of the Code Reduction

For code-reduce we have

ci = (vi,s) & di = (¢',s') & (vi—g,s) Bdj

bo=E((-)" )= T Priv—g = elE((~1)*))
ec{0,1}k
—E <6SHW(V‘_9)) :

where & is the secret bias
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Bias of the Code Reduction

For code-reduce we have

Ci = <Vi,3>@di = <g/’sl>@<vi _gvs>®di

bo=E((-)" )= T Priv—g = elE((~1)*))
ec{0,1}k
—E <6SHW(‘“_9)) :

where & is the secret bias
We analyse:

@ perfect codes
@ quasi-perfect codes

@ random codes
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Perfect Codes

@ Repetition code [k, 1, 2] with k odd

()

bc:z_lli 23 b
o\w /) 7

w=|

=~
[\

bc:

||M~|

@ Golay code [23,12,7]

—1,2—¢,3]

1ol
bc=2""* > <2w 1)52'

w=0

@ Hamming code [2°

08.12.2016
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Optimal Concatenated Code

Not every code Clk,k’,D] is perfect or quasi-perfect
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Optimal Concatenated Code

Not every code Clk,k’,D] is perfect or quasi-perfect

4

Concatenate codes
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Optimal Concatenated Code

Not every code Clk,k’,D] is perfect or quasi-perfect

I

Concatenate codes

Take the C [k,k’,D] code as the concatenation of (; [k —¢,k" — ¢',D;] and
G [¢,¢',Dy] with bc = bey - bey
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Optimal Concatenated Code

Not every code C[k,k’,D] is perfect or quasi-perfect

I

Concatenate codes

Take the C [k,k’,D] code as the concatenation of (; [k —¢,k" — ¢',D;] and
G [¢,¢',Dy] with bc = bey - bey

Computation:

@ compute the biases for perfect, quasi-perfect and random codes
@ for each [k,k’, D], check if bc[k,k’,D] < bc[k — ¢,k" — ¢',D;] - be[¢, ¢/, Dy]

Sonia Bogos, Serge Vaudenay Optimization of LPN Solving Algorithms 08.12.2016 19/27



Outline

a Our Algorithm
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LPN Solving Automaton

LPN solving algorithms = chains of reductions + WHT

LPN; — [reduction] — LPNg— ... — LPNg— — Si
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LPN Solving Automaton

LPN solving algorithms = chains of reductions + WHT

LPN, — [edistion) — LPN,— ... — LPN, — (Sog] —

xor-reduce xor-reduce

drop-reduce drop-reduce drop-reduce

initial state ; %Pme 5“"“; gcode reduce E 3
WHT
xor-reduce \ / WHT
xor-recfuce

acceptlng state
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Graph of Reduction Chains

Construct a graph of all possible reduction chains
@ the vertex stores the secret size and the number of queries

@ the edge stores the bias change for a reduction
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Construct a graph of all possible reduction chains
@ the vertex stores the secret size and the number of queries
@ the edge stores the bias change for a reduction
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Construct a graph of all possible reduction chains
@ the vertex stores the secret size and the number of queries
@ the edge stores the bias change for a reduction

Find the reductions that optimize the bias

The time complexity of a chain is the sum of the complexities of each
reduction step + cost of WHT
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Graph of Reduction Chains

Construct a graph of all possible reduction chains
@ the vertex stores the secret size and the number of queries

@ the edge stores the bias change for a reduction

Find the reductions that optimize the bias

The time complexity of a chain is the sum of the complexities of each
reduction step + cost of WHT

Use max-complexity as an approximation for the time complexity

Find the chain with the smallest max-complexity and compute its total time
complexity
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Graph of Reduction Chains

Find the chain with the smallest max-complexity and compute its total time
complexity
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Results

(k,T) ASIACRYPT'14 [GJL] EUROCRYPT'16 [ZJW] our results

(512,0.125) 81.90 80.09 78.84
(532,0.125) 88.62 82.17 81.02
(592,0.125) 97.71 89.32 87.57

Table: Logarithmic time complexity to solve LPN (in bit operations)

k - secret size
T - noise level
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Results

k

32 48 64 100 256 512 768

0.05 13.89 14.52 16.04 20.47 36.75 57.77 76.63

0.1 15.04 18.58 21.58 27.61 46.75 73.68 98.97

0.125 15.66 19.29 22.94 28.91 49.90 78.85 105.89

0.2 17.01 21.25 2442 32.06 56.31 89.04 121.04

0.25 18.42 22.34 26.86 32.94 59.47 94.66 127.35

Table: Logarithmic time complexity to solve LPN
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Conclusion

@ Create an algorithm that automatizes the LPN solving algorithms
@ Improve the best existing results

@ New reduction techniques can be integrated later on

Thank you for your kind attention!
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