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Group Signature and Group Encryption

Group signature [CvH - EC’91]: Group member can anonymously sign
messages on behalf of the whole group.
⇒ Hiding the source of the messages within registered signers.

Group encryption [KTY - AC’07]: the encryption analogue of group
signature. Sender can encrypt messages to an anonymous group
member.
⇒ Hiding the destination of the messages within registered receivers.

Group members are kept accountable for their actions: an opening
authority can un-anonymize the signatures/ciphertexts - should the
needs arise.
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Group Encryption [KTY - AC’07]

GE allows encrypting while proving that:

1 The ciphertext is well-formed and intended for some registered group
member who will be able to decrypt;

2 The opening authority will be able identify the receiver if necessary;

3 The plaintext satisfies certain properties.

Possible applications of GE:

Firewall filtering

Anonymous trusted third parties

Cloud storage services

Hierarchical group signatures [TW - ICALP’05].
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Previous Works on Group Encryption

[KTY - AC’07] introduced GE, and provided:

Modular design based on digital signatures, anonymous CCA-secure
public-key encryption, interactive zero-knowledge proofs;
Concrete instantiation based on number-theoretic assumptions.

[CLY - AC’09]: non-interactive GE in the standard model under
pairing-related assumptions.

[El Aimani,Joye - ACNS’13] suggested various improvements.

[LYJP - PKC’14]: refined traceability mechanism.

7 All existing realizations of GE rely on number-theoretic assumptions.

? Construction from other assumptions, e.g., lattice-based?
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In the World of Lattice-Based Crypto...

Many lattice-based group signatures published in the last 6 years.

First constructions: [GKV - AC’10], [CNR - SCN’12] - linear-size
signatures, static groups.

Logarithmic-size signatures: [LLLS - AC’13].

Improvements: [NZZ - PKC’15], [LNW - PKC’15], [LLNW - EC’16].

With additional features: [LLNW - PKC’14], [LNW - ACNS’16].

Dynamic groups: [LLMNW - AC’16].

But no lattice-based GE so far! Note that both GS and GE rely on

Ordinary signatures;

Public-key encryption;

Supporting zero-knowledge proofs.

Where is the main technical difficulty?
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Existing ZK Protocols in Lattice-Based Crypto

Two main classes:
1 Schnorr-like [Schnorr - Crypto’89] approach.

Introduced by Lyubashevsky [Lyu - PKC’08, EC’12]: rejection sampling.

2 Stern-like [Stern - Crypto’93, IEEE IT’96] approach.
First considered in the lattice setting by [KTX - AC’08].

Empowered by [LNSW - PKC’13]: decomposition and extension.

These techniques deal with linear relations, i.e., equations containing
terms:

(public matrix)·(secret vector),

where the secret vector may satisfy some constraints (e.g., smallness).

The (I)SIS relation [Ajtai - STOC’96, GPV - STOC’08]:

A · x = u mod q, for public (A,u).

The LWE relation [Regev - STOC’05]:

A · s + e = b mod q, for public (A,b).
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The Case of Lattice-Based Group Signatures

A modular design for GS [BMW-EC’03]: sign-then-encrypt-then-prove

Each user has a signature σ on his identity id , issued by the group
manager (GM).

In the process of generating GS, the user encrypts id to c - using the
public key of the opening authority (OA), then proves in ZK that:

1 He has a secret valid pair (id , σ), w.r.t. pkGM.

2 c is a well-formed ciphertext of id , w.r.t. pkOA.

3 Known techniques allow to realize the core ZK components required
by group signatures, for SIS-based signatures and LWE-based encryption.
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Towards Realizing Lattice-Based Group Encryption

A modular design:

Each member has a key pair (sk , pk) for an anonymous encryption scheme.

Manager signs member’s public key pk, and publishes (pk , σ).

Sender uses pk to encrypt a message µ satisfying relation R, obtains c.

Sender also encrypts pk under the pkOA, obtains cOA.

Prove that:

1 c is a correct encryption of some message µ, w.r.t a hidden pk;

2 Sender knows a valid signature σ on pk , w.r.t. pkGM; cOA is a correct
encryption of pk , w.r.t. pkOA; The message µ satisfies relation R.

Main Difficulty

We would have to handle an LWE relation with hidden-but-certified matrix:

X · s + e = b mod q.

We call this “quadratic relation”: Main obstacle; new ideas are required.
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Our Results

We introduce:

1 Zero-knowledge arguments for “quadratic relations”, e.g.,

b = X · s + e mod q,

where X ∈ Zm×n
q , s ∈ Zn

q may satisfy additional relations.

Approach: Developing Stern-like protocols, i.e., “linear → quadratic”.

New techniques: May be of independent interest.

2 The first lattice-based group encryption scheme.

Under the LWE and SIS assumptions, the scheme is proven secure in
the [KTY - AC’07] model.
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Stern’s Ideas

[Stern - ’93,’96]: A zero-knowledge protocol for the syndrome decoding problem.

A · x = u mod 2,

for public (A,u) and secret binary vector x having fixed Hamming weight w .

Stern’s Ideas

1 Permuting: Proving the witness constraint using random permutation.

Send the verifier π(x).
x has constraint “binary vector with weight w” iff π(x) does.

The randomness of π protects the actual value of x.

2 Masking: Proving the linear equation using a random masking r.

Send the verifier y = x + r, and show that: A · y = u + A · r.

We will:

1 Pre-process the given “quadratic relation”;

2 Exploit Stern’s ideas, especially: permuting.
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Dealing with Quadratic Relations: First Step

Goal

Transforming X · s = (public matrix) · (secret vector) mod q.

1 X · s =
∑n

i=1 xi · si , where xi ∈ Zm
q : columns of X; and si ∈ Zq: entries of s.

2 xi · si = H ·
(
xi,1 · si , . . . xi,mk · si

)T
, where k = dlog2 qe and H is a public

matrix allowing to decompose elements of Zq into k bits.

3 xi,j ·si = xi,j ·(q1, . . . , qk)·(si,1, . . . , si,k)T = (q1, . . . , qk)·(xi,j·si,1, . . . , xi,j·si,k)T .

xi,j · si has form (public matrix)·(secret vector) → so does xi · si → so does X · s:

X · s = Q · z mod q,

where Q ∈ Zm×nmk2

q and z ∈ {0, 1}nmk2

.

z is still “quadratic”: each zi is a product of a bit from X and a bit from s.

The component bits additionally satisfy other relations.
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Dealing with Quadratic Relations: Second Step

A Divide-and-Conquer Strategy

Proving that a secret bit z has the form z = c1 · c2, while preserving the
possibility of showing that the component bits c1 and c2 satisfy other equations.

Technique: Two-bit-based permuting.

For c ∈ {0, 1}, let c = 1− c . For c1, c2 ∈ {0, 1}, define the vector

ext(c1, c2) = (c1 · c2, c1 · c2, c1 · c2, c1 · c2)> ∈ {0, 1}4.

For b1, b2 ∈ {0, 1}, define the permutation Tb1,b2 that transforms vector

v = (v0,0, v0,1, v1,0, v1,1)> ∈ Z4

to vector (vb1,b2 , vb1,b2
, vb1,b2

, vb1,b2
)>.

Note that, for all c1, c2, b1, b2 ∈ {0, 1}, we have the equivalence:

v = ext(c1, c2) ⇐⇒ Tb1,b2(v) = ext(c1 ⊕ b1, c2 ⊕ b2).
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to vector (vb1,b2 , vb1,b2
, vb1,b2

, vb1,b2
)>.

Note that, for all c1, c2, b1, b2 ∈ {0, 1}, we have the equivalence:

v = ext(c1, c2) ⇐⇒ Tb1,b2(v) = ext(c1 ⊕ b1, c2 ⊕ b2).
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How Does It Work?

v = ext(c1, c2) ⇐⇒ Tb1,b2(v) = ext(c1 ⊕ b1, c2 ⊕ b2).

Example: Let c1 = 1, c2 = 0. Then:

v = ext(c1, c2) = (c1 · c2, c1 · c2, c1 · c2, c1 · c2)>

= (0 ·1, 0 ·0, 1 ·1, 1 ·0)T = (0, 0, 1, 0)T .

We have v0,0 = 0, v0,1 = 0, v1,0 = 1, v1,1 = 0. Now, let b1 = 1, b2 = 1.

Tb1,b2(v) = (v1,1, v1,0, v0,1, v0,0)> = (0, 1, 0, 0)T

= ext(0, 1) = ext(1⊕ 1, 0⊕ 1) = ext(c1 ⊕ b1, c2 ⊕ b2).

Solution to the sub-problem:

1 Extend z = c1 · c2 to v = ext(c1, c2).

2 Permute v with random bits b1, b2, and give the verifier the permuted vector.

3 To prove that the same bits c1, c2 appear in other equations: set up similar
mechanisms at their other appearances, and use the same b1, b2.
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Putting Everything Together

Our new Stern-like techniques allow to handle “quadratic relations”.

Ingredients for our GE instantiation:

1 An anonymous CCA-secure PKE obtained from the [ABB - EC’10] IBE
scheme, via the [CHK - EC’04] transformation.

2 The signature scheme from [LLMNW - AC’16].

Combining with known Stern-like techniques for encryption and
signatures, we obtain the ZK protocol required for the GE.

Thank you!
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