
Efficient Public-Key Cryptography with Bounded
Leakage and Tamper Resilience

Antonio Faonio1 Daniele Venturi2

Department of Computer Science, Aarhus University, Aarhus, Denmark

Department of Information Engineering and Computer Science, University of
Trento, Trento, Italy

December 8, 2016

1/14

(Provable Secure) Crypto before Physical Attacks

P1 P2

2/14

Crypto with Physical Attacks

P1 P2))))))))

Leak Attacks [Koc96],

Tampering Attacks [BDL97]

3/14

Crypto with Physical Attacks

P1 P2))))))))

Leak Attacks [Koc96], Tampering Attacks [BDL97]

3/14

(Minimal) Related Works

Memory Circuit

[IPSW06][GLMMR04]
Restricted Bounded

[DPW10,BK03] [DFMV13]

Definitions of Bounded-Tamper (and Leakage) Resilience,

Identification Scheme and Signatures (ROM),

CCA-Secure PKE.

4/14

(Minimal) Related Works

Memory Circuit

[IPSW06][GLMMR04]
Restricted Bounded

[DPW10,BK03] [DFMV13]

Definitions of Bounded-Tamper (and Leakage) Resilience,

Identification Scheme and Signatures (ROM),

CCA-Secure PKE. 4/14

Our Contributions

BTL Signature Scheme.

Example. The Imp. result of [GLMMR03] does not hold.

BLT CCA Public Key Encryption.
Naor-Yung paradigm, what about Cramer-Shoup?

5/14

Our Contributions

BTL Signature Scheme.

Example. The Imp. result of [GLMMR03] does not hold.

BLT CCA Public Key Encryption.
Naor-Yung paradigm, what about Cramer-Shoup?

5/14

6/14

Introduction
BLT-CCA PKE

Section 2

BLT-CCA PKE

Antonio Faonio, Daniele Venturi Efficient Public-Key Cryptography with Bounded Leakage and Tamper Resilience

(t, `)-BLT IND-CCA PKE:

c
m

A leaks before challenge ` bits;

A instantiates before challenge t oracles

(for `+ t 6 |sk | − ω(log k))

7/14

(t, `)-BLT IND-CCA PKE:

c
m

c
m

...

ppar

A leaks before challenge ` bits;

A instantiates before challenge t oracles

(for `+ t 6 |sk | − ω(log k))

7/14

The Scheme of [QL13]: Building Blocks

ε-Hash Proof System

Complete: For c ∈ V,
Pubpk(c ,w) = Λsk(c).

Sound: For c ∈ C \ V,any pk = µ(sk):

H̃∞(K := Λsk(c)|pk) > − log ε

Set Membership Problem.

δ-extractor

H̃∞(X|Z) > δ, we have (Z,S,Ext(X,S)) ≈ (Z,S,U)

8/14

The Scheme of [QL13]: Building Blocks

ε-Hash Proof System

Complete: For c ∈ V,
Pubpk(c ,w) = Λsk(c).

Sound: For c ∈ C \ V,any pk = µ(sk):

H̃∞(K := Λsk(c)|pk) > − log ε

Set Membership Problem.

δ-extractor

H̃∞(X|Z) > δ, we have (Z,S,Ext(X,S)) ≈ (Z,S,U)

8/14

The Scheme of [QL13]: Building Blocks

ε-Hash Proof System

Complete: For c ∈ V,
Pubpk(c ,w) = Λsk(c).

Sound: For c ∈ C \ V,any pk = µ(sk):

H̃∞(K := Λsk(c)|pk) > − log ε

Set Membership Problem.

δ-extractor

H̃∞(X|Z) > δ, we have (Z,S,Ext(X,S)) ≈ (Z,S,U)

8/14

The Scheme of [QL13]: Building Blocks, Pt.2

`-(OT-)Lossy Filter

LFφ : T × X → Y

9/14

The Scheme of [QL13]: Building Blocks, Pt.2

`-(OT-)Lossy Filter

LFφ : T × X → Y

tag

9/14

The Scheme of [QL13]: Building Blocks, Pt.2

`-(OT-)Lossy Filter

LFφ : T × X → Y

tagtag

9/14

The Scheme of [QL13]: Building Blocks, Pt.2

`-(OT-)Lossy Filter

LFφ : T × X → Y

tagtag

Losiness: |{•}| > 2`

Indistinghuishable: tagtag ∈ {0, 1}∗ × Tc

Evasiviness: It is hard to forge t∗c lossy even
given one lossy tag.

9/14

The Scheme of [QL13]: Building Blocks, Pt.2

`-(OT-)Lossy Filter

LFφ : T × X → Y

tagtag

Losiness: |{•}| > 2`

Indistinghuishable: tagtag ∈ {0, 1}∗ × Tc
Evasiviness: It is hard to forge t∗c lossy even
given one lossy tag.

9/14

The Scheme of [QL13]:

m

K ExtC

S

H∞(K∗|pk,C∗,L) > − log ε− |L|

H∞(K∗|pk,C∗,L,Π) > − log ε− |L| − `

10/14

The Scheme of [QL13]:

m

K ExtC

S

m

K ExtC

S

H∞(K∗|pk,C∗,L) > − log ε− |L|

H∞(K∗|pk,C∗,L,Π) > − log ε− |L| − `

10/14

The Scheme of [QL13]:

m

K ExtC

S

m

K ExtC

S

m

K ExtC

S

H∞(K∗|pk,C∗,L) > − log ε− |L|

H∞(K∗|pk,C∗,L,Π) > − log ε− |L| − `

10/14

The Scheme of [QL13]:

m

K ExtC

S

m

K ExtC

S

m

K ExtC

S

H∞(K∗|pk,C∗,L) > − log ε− |L|

H∞(K∗|pk,C∗,L,Π) > − log ε− |L| − `
10/14

Reduce Tampering to Leakage

aux

aux = L(sk)

Interact unbounded with DecT (sk), while aux small and
bounded.

11/14

aux

Let s̃k = T (sk), leak µ(s̃k)

((C ,S ,Φ), tc ,Π)

C ∈ V
(C , µ(s̃k)) fully define K . Execute Decryption.

C 6∈ V
Depend on H∞(Λs̃k(C)|View = v).

If big then output ⊥;

If small then leak s̃k and run Decs̃k .

Yeah, but what do big and small even mean? I would tell you, if I
had time..

12/14

aux

Let s̃k = T (sk), leak µ(s̃k)

((C , S ,Φ), tc ,Π)

C ∈ V
(C , µ(s̃k)) fully define K . Execute Decryption.

C 6∈ V
Depend on H∞(Λs̃k(C)|View = v).

If big then output ⊥;

If small then leak s̃k and run Decs̃k .

Yeah, but what do big and small even mean? I would tell you, if I
had time..

12/14

aux

Let s̃k = T (sk), leak µ(s̃k)

((C , S ,Φ), tc ,Π)

C ∈ V
(C , µ(s̃k)) fully define K . Execute Decryption.

C 6∈ V
Depend on H∞(Λs̃k(C)|View = v).

If big then output ⊥;

If small then leak s̃k and run Decs̃k .

Yeah, but what do big and small even mean? I would tell you, if I
had time..

12/14

aux

Let s̃k = T (sk), leak µ(s̃k)

((C , S ,Φ), tc ,Π)

C ∈ V
(C , µ(s̃k)) fully define K . Execute Decryption.

C 6∈ V
Depend on H∞(Λs̃k(C)|View = v).

If big then output ⊥;

If small then leak s̃k and run Decs̃k .

Yeah, but what do big and small even mean? I would tell you, if I
had time..

12/14

aux

Let s̃k = T (sk), leak µ(s̃k)

((C , S ,Φ), tc ,Π)

C ∈ V
(C , µ(s̃k)) fully define K . Execute Decryption.

C 6∈ V
Depend on H∞(Λs̃k(C)|View = v).

If big then output ⊥;

If small then leak s̃k and run Decs̃k .

Yeah, but what do big and small even mean?

I would tell you, if I
had time..

12/14

aux

Let s̃k = T (sk), leak µ(s̃k)

((C , S ,Φ), tc ,Π)

C ∈ V
(C , µ(s̃k)) fully define K . Execute Decryption.

C 6∈ V
Depend on H∞(Λs̃k(C)|View = v).

If big then output ⊥;

If small then leak s̃k and run Decs̃k .

Yeah, but what do big and small even mean? I would tell you, if I
had time..

12/14

Mathemagical!!

β = s − log ε, s = log |SK |
α = log |PK |

We pay approx α + β bits of leakage for each tampering
oracle.

t =
s

α + β

We can instantiate the HPS using RSI.

13/14

Mathemagical!!

β = s − log ε, s = log |SK |
α = log |PK |

We pay approx α + β bits of leakage for each tampering
oracle.

t =
s

α + β

We can instantiate the HPS using RSI.

13/14

14/14

Introduction
BLT-CCA PKE

Open Problems

Is the tampering rate O(1/k) inherent?

A better Hash Proof System?

Thank You!

Antonio Faonio, Daniele Venturi Efficient Public-Key Cryptography with Bounded Leakage and Tamper Resilience

14/14

Introduction
BLT-CCA PKE

Open Problems

Is the tampering rate O(1/k) inherent?

A better Hash Proof System?

Thank You!

Antonio Faonio, Daniele Venturi Efficient Public-Key Cryptography with Bounded Leakage and Tamper Resilience

	Introduction
	BLT-CCA PKE

