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(Provable Secure) Crypto before Physical Attacks
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Crypto with Physical Attacks

P1 P2)))) ))))

Leak Attacks [Koc96],

Tampering Attacks [BDL97]
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(Minimal) Related Works

Memory Circuit

[IPSW06][GLMMR04]
Restricted Bounded

[DPW10,BK03] [DFMV13]

Definitions of Bounded-Tamper (and Leakage) Resilience,

Identification Scheme and Signatures (ROM),

CCA-Secure PKE.
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Our Contributions

BTL Signature Scheme.

Example. The Imp. result of [GLMMR03] does not hold.

BLT CCA Public Key Encryption.
Naor-Yung paradigm, what about Cramer-Shoup?
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Introduction
BLT-CCA PKE

Section 2

BLT-CCA PKE
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(t, `)-BLT IND-CCA PKE:

c
m

A leaks before challenge ` bits;

A instantiates before challenge t oracles

(for `+ t 6 |sk | − ω(log k))
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The Scheme of [QL13]: Building Blocks

ε-Hash Proof System

Complete: For c ∈ V,
Pubpk(c ,w) = Λsk(c).

Sound: For c ∈ C \ V,any pk = µ(sk):

H̃∞(K := Λsk(c)|pk) > − log ε

Set Membership Problem.

δ-extractor

H̃∞(X|Z) > δ, we have (Z,S,Ext(X,S)) ≈ (Z,S,U)

8/14



The Scheme of [QL13]: Building Blocks

ε-Hash Proof System

Complete: For c ∈ V,
Pubpk(c ,w) = Λsk(c).

Sound: For c ∈ C \ V,any pk = µ(sk):

H̃∞(K := Λsk(c)|pk) > − log ε

Set Membership Problem.

δ-extractor

H̃∞(X|Z) > δ, we have (Z,S,Ext(X,S)) ≈ (Z,S,U)

8/14



The Scheme of [QL13]: Building Blocks

ε-Hash Proof System

Complete: For c ∈ V,
Pubpk(c ,w) = Λsk(c).

Sound: For c ∈ C \ V,any pk = µ(sk):

H̃∞(K := Λsk(c)|pk) > − log ε

Set Membership Problem.

δ-extractor

H̃∞(X|Z) > δ, we have (Z,S,Ext(X,S)) ≈ (Z,S,U)

8/14



The Scheme of [QL13]: Building Blocks, Pt.2

`-(OT-)Lossy Filter

LFφ : T × X → Y
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Losiness: |{•}| > 2`

Indistinghuishable: tagtag ∈ {0, 1}∗ × Tc

Evasiviness: It is hard to forge t∗c lossy even
given one lossy tag.
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The Scheme of [QL13]:
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K ExtC
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Reduce Tampering to Leakage

aux

aux = L(sk)

Interact unbounded with DecT (sk), while aux small and
bounded.
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aux

Let s̃k = T (sk), leak µ(s̃k)

((C ,S ,Φ), tc ,Π)

C ∈ V
(C , µ(s̃k)) fully define K . Execute Decryption.

C 6∈ V
Depend on H∞(Λs̃k(C )|View = v).

If big then output ⊥;

If small then leak s̃k and run Decs̃k .

Yeah, but what do big and small even mean? I would tell you, if I
had time..
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Mathemagical!!

β = s − log ε, s = log |SK |
α = log |PK |

We pay approx α + β bits of leakage for each tampering
oracle.

t =
s

α + β

We can instantiate the HPS using RSI.
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Introduction
BLT-CCA PKE

Open Problems

Is the tampering rate O(1/k) inherent?

A better Hash Proof System?

Thank You!
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