Efficient Public-Key Cryptography with Bounded Leakage and Tamper Resilience

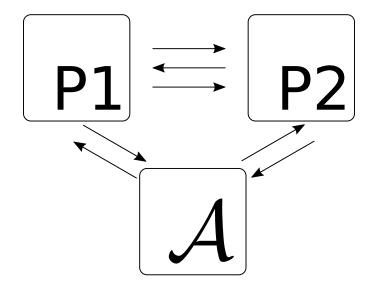
Antonio Faonio¹ Daniele Venturi²

Department of Computer Science, Aarhus University, Aarhus, Denmark

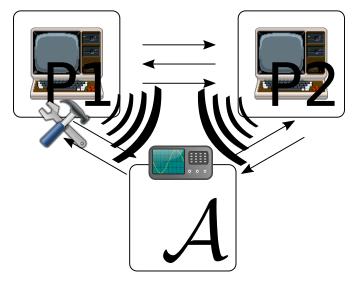
Department of Information Engineering and Computer Science, University of Trento, Trento, Italy

December 8, 2016

(Provable Secure) Crypto before Physical Attacks

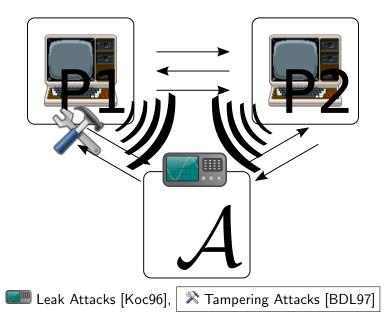


Crypto with Physical Attacks

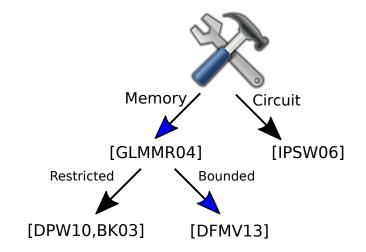




Crypto with Physical Attacks

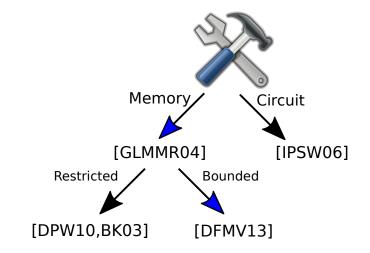


(Minimal) Related Works



4/14

(Minimal) Related Works



- Definitions of Bounded-Tamper (and Leakage) Resilience,
- Identification Scheme and Signatures (ROM),
- CCA-Secure PKE.

• BTL Signature Scheme.

Example. The Imp. result of [GLMMR03] does not hold.

• BTL Signature Scheme.

Example. The Imp. result of [GLMMR03] does not hold.

• BLT CCA Public Key Encryption. Naor-Yung paradigm, what about Cramer-Shoup? Introduction BLT-CCA PKE

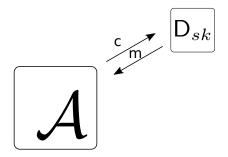
Section 2

BLT-CCA PKE

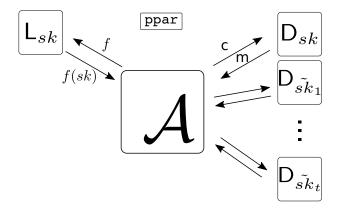
6/14

Antonio Faonio, Daniele Venturi Efficient Public-Key Cryptography with Bounded Leakage and Ta

(t, ℓ) -BLT IND-CCA PKE:



(t, ℓ) -BLT IND-CCA PKE:

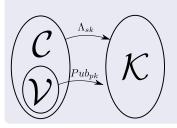


- \mathcal{A} leaks before challenge ℓ bits;
- \mathcal{A} instantiates before challenge t oracles

(for $\ell + t \leq |sk| - \omega(\log k)$)

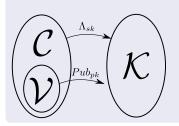
8/14

ϵ -Hash Proof System



- Complete: For $c \in \mathcal{V}$, $\overline{Pub_{pk}(c, w)} = \Lambda_{sk}(c)$.
- <u>Sound</u>: For $c \in C \setminus \mathcal{V}$, any $pk = \mu(sk)$: $\widetilde{\mathbb{H}}_{\infty}(K := \Lambda_{sk}(c)|pk) \ge -\log \epsilon$
- Set Membership Problem.

ϵ -Hash Proof System



- Complete: For $c \in \mathcal{V}$, $\overline{Pub_{pk}(c, w)} = \Lambda_{sk}(c)$.
- <u>Sound</u>: For $c \in C \setminus \mathcal{V}$, any $pk = \mu(sk)$: $\widetilde{\mathbb{H}}_{\infty}(K := \Lambda_{sk}(c)|pk) \ge -\log \epsilon$
- Set Membership Problem.

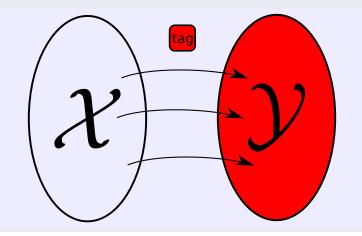
δ -extractor

$\widetilde{\mathbb{H}}_{\infty}(\mathsf{X}|\mathsf{Z}) \geqslant \delta$, we have $(\mathsf{Z},\mathsf{S},\mathsf{Ext}(\mathsf{X},\mathsf{S})) pprox (\mathsf{Z},\mathsf{S},\mathsf{U})$

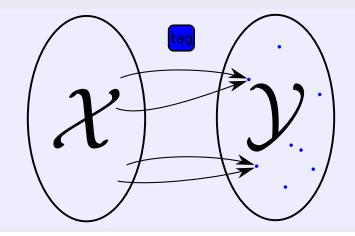
ℓ-(OT-)Lossy Filter

$\mathsf{LF}_\phi:\mathcal{T}\times\mathcal{X}\to\mathcal{Y}$

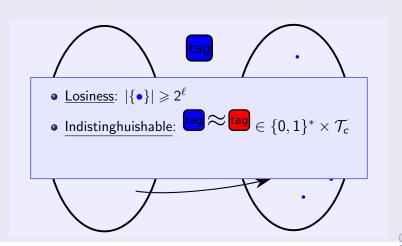
$$\mathsf{LF}_{\phi}:\mathcal{T}\times\mathcal{X}\to\mathcal{Y}$$



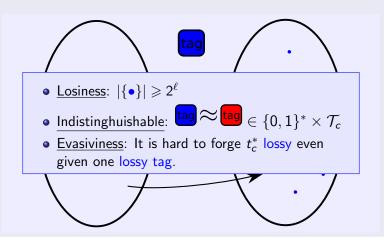
$$\mathsf{LF}_{\phi}:\mathcal{T}\times\mathcal{X}\to\mathcal{Y}$$

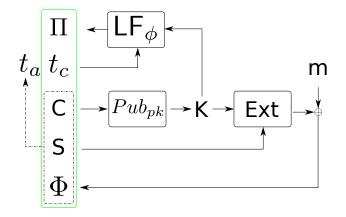


$$\mathsf{LF}_{\phi}:\mathcal{T}\times\mathcal{X}\to\mathcal{Y}$$

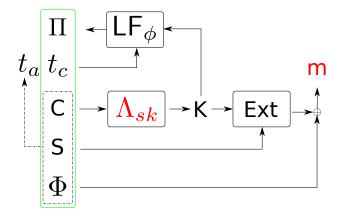


$$\mathsf{LF}_\phi:\mathcal{T}\times\mathcal{X}\to\mathcal{Y}$$

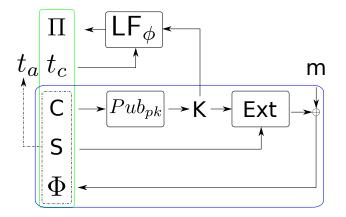




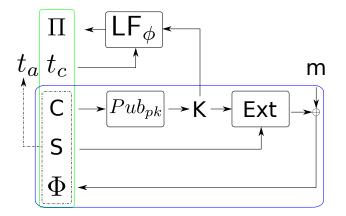
10/14



10/14



 $\mathbb{H}_{\infty}(\mathsf{K}^*|\mathsf{pk},\mathsf{C}^*,\mathsf{L}) \geqslant -\log \varepsilon - |\mathsf{L}|$



 $\mathbb{H}_{\infty}(\mathsf{K}^*|\mathsf{pk},\mathsf{C}^*,\mathsf{L}) \geqslant -\log \varepsilon - |\mathsf{L}|$

$$\mathbb{H}_{\infty}(\mathsf{K}^*|\mathsf{pk},\mathsf{C}^*,\mathsf{L},\mathsf{\Pi}) \geqslant -\log\varepsilon - |\mathsf{L}| - \ell$$

10/

$$\textcircled{\mathsf{Dec}_{T(sk)}} \approx \fbox{O}_{\texttt{aux}}$$

Interact unbounded with Dec_{T(sk)}, while aux small and bounded.

$$Dec_{T(sk)} \approx \bigcirc_{ext}$$
Let $\tilde{sk} = T(sk)$, leak $\mu(\tilde{sk})$

$$\underbrace{\mathbb{D}ec_{T(sk)}}_{\mathbb{C}ex} \approx \underbrace{\mathcal{O}_{exx}}_{\mathbb{C}ex}$$
 Let $\underline{\tilde{sk}} = T(sk)$, leak $\mu(\underline{\tilde{sk}})$

$C \in \mathcal{V}$

 $(C, \mu(\tilde{sk}))$ fully define K. Execute Decryption.

$$\begin{array}{c} \hline \mathbb{D}\mathsf{ec}_{T(sk)} \\ \approx \hline \mathcal{O}_{\texttt{aux}} \\ \end{array} \\ \mathsf{Let} \; \tilde{\textit{sk}} = \textit{T}(\textit{sk}), \; \underline{\mathsf{leak}} \; \mu(\tilde{\textit{sk}}) \end{array}$$

$C \in \mathcal{V}$

 $(C, \mu(\tilde{sk}))$ fully define K. Execute Decryption.

$C \notin \underline{\mathcal{V}}$

Depend on $\mathbb{H}_{\infty}(\Lambda_{\tilde{sk}}(C)|\mathbf{View} = v)$.

- If big then output \perp ;
- If small then <u>leak</u> \tilde{sk} and run $\text{Dec}_{\tilde{sk}}$.

$$\begin{array}{c} \hline \mathbb{D}\mathsf{ec}_{T(sk)} \\ \approx \hline \mathcal{O}_{\texttt{aux}} \\ \end{array} \\ \mathsf{Let} \; \tilde{\textit{sk}} = \textit{T}(\textit{sk}), \; \underline{\mathsf{leak}} \; \mu(\tilde{\textit{sk}}) \end{array}$$

$C \in \mathcal{V}$

 $(C, \mu(\tilde{sk}))$ fully define K. Execute Decryption.

$C \not\in \mathcal{V}$

Depend on $\mathbb{H}_{\infty}(\Lambda_{\tilde{sk}}(C)|\mathbf{View} = v)$.

- If big then output \perp ;
- If small then <u>leak</u> \tilde{sk} and run $\text{Dec}_{\tilde{sk}}$.

Yeah, but what do big and small even mean?

$$\begin{array}{c} \hline \mathbb{D}\mathsf{ec}_{T(sk)} \end{array} \approx \hline \mathcal{O}_{\text{aux}} \end{array} \\ \mathsf{Let} \ \tilde{\textit{sk}} = \textit{T}(\textit{sk}), \ \underline{\mathsf{leak}} \ \mu(\tilde{\textit{sk}}) \end{array}$$

$C \in \mathcal{V}$

 $(C, \mu(\tilde{sk}))$ fully define K. Execute Decryption.

$C \not\in \mathcal{V}$

Depend on $\mathbb{H}_{\infty}(\Lambda_{\tilde{sk}}(C)|\mathbf{View} = v)$.

- If big then output \perp ;
- If small then <u>leak</u> \tilde{sk} and run $\text{Dec}_{\tilde{sk}}$.

Yeah, but what do big and small even mean? I would tell you, if I had time..

Mathemagical!!

$$\beta = s - \log \varepsilon, \ s = \log |SK|$$
$$\alpha = \log |PK|$$

• We pay approx $\alpha + \beta$ bits of leakage for each tampering oracle.

$$t=\frac{s}{\alpha+\beta}$$

Mathemagical!!

$$\beta = s - \log \varepsilon, \ s = \log |SK|$$
$$\alpha = \log |PK|$$

• We pay approx $\alpha + \beta$ bits of leakage for each tampering oracle.

$$t = rac{s}{lpha + eta}$$

We can instantiate the HPS using RSI.

13/14

Open Problems

- Is the tampering rate O(1/k) inherent?
- A better Hash Proof System?

14/14

Open Problems

- Is the tampering rate O(1/k) inherent?
- A better Hash Proof System?

Thank You!