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Additive (Implicit) Notation

Given a group G of prime order g and a generator g € G:

|

g - [1]

1 — [0]

99’ - Xyl =[x+
(9) = XV =[xy
(g4,...,9) — [X1,...,Xn]

4

(gxﬂ gX1m) !XH X1m]
ng ce anm Xm *++ Xpm
Given a (symmetric) bilinear map e: G x G — Gr:

e(g,9) =97 —  elxl)=Dylr
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Subspace Membership Problems

For a (k, ¢)-collection of vector subspaces of dimension k,
S = {S;}jcz, of the vector space Z¢, where 0 < k < ¢

Definition (Subspace Membership Problem)
Given G and g, tell apart
Drca = ([S],[2]) for random S+ Sand z«+ S

Drandom = ([S] [2]) for random S «+— S and z « Z
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Subspace Membership Problems

000
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For a (k, ¢)-collection of vector subspaces of dimension k,
S = {S;}jcz, of the vector space Z¢, where 0 < k < ¢

Definition (Subspace Membership Problem)
Given G and g, tell apart

Drca = ([S],[2]) for random S+ Sand z«+ S

Drandom = ([S] [2]) for random S «+— S and z « Z

Typically, S = Span A, where A € Z5** and rank A = k.
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Subspace Membership Problems
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Subspace Membership Problems

2-Lin:|A(ay, a) = (O 82) ai,a «— Zgq
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Given1 < k < ¢,

A« Dj,, where A € Zg*¥, rank A = k and A is sampled
accordlng to A= f(ay,...,aq), Where ay,...,aq < Zgand f is
a polynomial map of constant degree.




Matrix Distr

Given1 < k < ¢,

A« Dj,, where A € Zg*¥, rank A = k and A is sampled
accordlng to A= f(ay,...,aq), Where ay,...,aq < Zgand f is
a polynomial map of constant degree.

@ We also tolerate Pr(rank A < k) € negl.
@ We focus onthe case / = k+ 1, and deg f = 1
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Matrix Distributions

Given1 < k < ¢,

Definition (Polynomial Matrix Distribution)

A<+ D}, where A € Zg¥, rank A = k and A is sampled
accordlng to A= f(ay,...,aq), Where ay,...,aq < Zgand f is
a polynomial map of constant degree.

@ We also tolerate Pr(rank A < k) € negl.
@ We focusonthecase/=k+1,anddegf =1

1 a 0
Eg A(a) = (a> A(a1 , az) = 0 a
1 1
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Matrix Decision Diffie-Hellman (MDDH) Problems

Definition (Dék-MDDH Problem [EHKRV13])
Tell apart the two probability distributions
Dreal = (G, 9, 9. [A()], [A()W]), t 2§, w < Z§
Drandom = (G, 9, 9, [A()], [2]), t + 23, z + Z§

The D7, -MDDH Assumption states that the above problem is
hard, w.r.t. and instance generator (q,G,9) « T
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Matrix Decision Diffie-Hellman (MDDH) Problems

Definition (Dék-MDDH Problem [EHKRV13])
Tell apart the two probability distributions
Dreal = (G, 9, 9. [A()], [A()W]), t 2§, w < Z§
Drandom = (G, 9, 9, [A()], [2]), t + 23, z + Z§

The D7, -MDDH Assumption states that the above problem is
hard, w.r.t. and instance generator (q,G,9) « T

Generic hardness depends on the degree and irreducibility of
the determinant polynomial d(t, z) = det(A(t)||z)
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Hardness > k+1
Known Instances
t 0 0
1 bk 0 b
Acunit= | ¢+ 0 Ag-Lin = .0
tk+11 tk1 k 0 -~ 0 ¢t
1 1 1
L O 0 t 0 0
1 b 1t -
Akcasc= |0 . . 0 Ak-scasc = | 0 .0
: 1 b : 1t
0 0o 1 0 0 1
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Applications

Some known applications:

o Public key encryption

o Hash Proof systems

o Pseudorandom functions

o Non-interactive Zero-Knowledge proofs (Groth-Sahai)
o Efficient Proofs for CRS-Dependent Languages

Key idea: Most constructions based on DDH or 2-Lin are
actually valid for any MDDH problem
We can obtain
@ more compact instances
@ more secure instances (secure even when an efficient
multilinear map is available)
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Flexible Computational Matrix Problems

Decision problems: natural model for indistinguishability
adversarial capabilities (IND-CPA, pseudorandomness,. . . ).
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Flexible Computational Matrix Problems

Decision problems: natural model for indistinguishability
adversarial capabilities (IND-CPA, pseudorandomness,. . . ).

(Flexible) computational problems: Capture forgery
adversarial capabilities. E.g. breaking

o unforgeability of a digital signature
@ soundness of a ZK argument

@ binding property of a commitment
Q ...
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Flexible Computational Matrix Problems

Decision problems: natural model for indistinguishability
adversarial capabilities (IND-CPA, pseudorandomness,. . . ).

(Flexible) computational problems: Capture forgery
adversarial capabilities. E.g. breaking

o unforgeability of a digital signature
@ soundness of a ZK argument

@ binding property of a commitment
Q ...

We unify some existing flexible computational problems in
the literature in a single framework.
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The Kernel Matrix Diffie-Hellman Assumption

For a (r, ¢)-collection of vector subspaces of dimension r,
S = {S;}jez, of the vector space Z¢, where 0 < r < ¢

Definition (Subspace Sampling Problem)
Given G, g and [S], find [x] where x is a nonzero vector in S

Typically S = ker AT, where A € Z5*¥ rank A= k and r = ¢ — k.
q
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The Kernel Matrix Diffie-Hellman Assumption
For a (r, ¢)-collection of vector subspaces of dimension r,
S = {S;}jez, of the vector space Z¢, where 0 < r < ¢

Definition (Subspace Sampling Problem)
Given G, g and [S], find [x] where x is a nonzero vector in S

Typically S = ker A", where A € ZQX", rank A=kandr=/{— k.

Definition (Dék-KerMDH Problem)

Given [A], where A < D, « find a nonzero vector [x] such that
xTA=0.

The D7}, -KerDH Assumption states that the above problem is
hard, w.r.t. and instance generator (q,G,9) < T
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KerMDH Examples

000

DDH Kernel: A(a) = (;) a< Zq

Given [A], find [x1, X2] # [0] such that

(X1 Xg) ; =xy+ax=0

a 0
2-Lin Kernel: A(ay, a») = (O ag) ay, a < ZLq
1 1

Given [A], find [xq, X2, X3] # [0] such that

a 0
(x1 X X3) (0 az> = (a1xi + X3 axo+Xx3) =0
1 1
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KerMDH Examples

DDH Kernel: A(a) = (;) a+"7q

) Just Take
Given [A], find fxf, Xa}-5 [0] such that [x, x,] = [-a,1]!

(X1 Xg) :Ia =xy+ax=0

a 0
2-Lin Kernel: A(ay, a») = (O ag) ay, a < ZLq
1 1

Given [A], find [xq, X2, X3] # [0] such that

a 0
(x1 X X3) (0 az> = (a1xi + X3 axo+Xx3) =0
1 1
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KerMDH Examples

DDH Kernel: A(a) = (;) a+"7q

3 Just Take
Given [A], find fxf, Xa}-5 [0] such that [x, x,] = [-a,1]!

(X1 Xg) <1a> =Xx1+axe=0

a 0
2-Lin Kernel: A(ay, a») = (O ag) ay, a < ZLgq
1 1

Given [A], find [x{, X2, X3] # [0] such that
a0

(x1 X X3) (0 82) = (a1xi + X3 axo+Xx3) =0
1 1

[X1, X2, X3] = [—a2\, —a1 A, a1ax\] for some .
Hard to compute from [a1], [a2]!
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In pairing groups, Dy',-MDDH = D\, -KerDH I

Drear:

xAw=0 = x'(Aw)=0 = ¢([x'],[Aw]) = [0]F
Drandom:

z+ 7 = x'z#0 = e(x'],[Aw]) #[0]r w.o.p.
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More Examples

Lemma (KerMDH vs. MDDH)
In pairing groups, D', -MDDH = D' -KerDH

Drear:
xXTAw=0 = x"(Aw)=0 = e([x'],[Aw]) = [0]F
Drandom:

z+Zy = xz#0 = e(x'],[Aw]) #[0]r w.o.p.

All hard MDDH instances define hard KerMDH instances:
k-Unif, k-Lin, k-Casc, k-SCasc, ...
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The KerMDH Family

o KerMDH integrates some previously known assumptions:
Find-Rep [Brands93]

Simultaneous Double Pairing [AFGHO10]

Triple Pairing [Groth10]

Simultaneous Pairing [GLO7]

1-Flexible Diffie-Hellman [LV08]

1-Flexible Square Diffie-Hellman [LPV05]

(]

© 06 06 0 ©

C. Rafols, P. Morillo and J. L. Villar The Kernel MDH Assumption



Introduction Kernel MDH Hardness £>k+1
0000000 000080 00000 000

The KerMDH Family

o KerMDH integrates some previously known assumptions:

Find-Rep [Brands93]

Simultaneous Double Pairing [AFGHO10]
Triple Pairing [Groth10]

Simultaneous Pairing [GLO7]

1-Flexible Diffie-Hellman [LV08]
1-Flexible Square Diffie-Hellman [LPV05]

(]
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o Applications:

Homomorphic Signatures [LPJY13]
Quasi-Adaptive NIZK [KW15]

Trapdoor Commitments to Group Elements
Structure Preserving Signatures [KPW15], ...

© 0 0 ©
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The power of KerMDH

Designated-verifier proof of membership:
Given [x] and [M], prove that x = Mw for some w.
Designated verifier keys: Secret K, public [MK].
Proof: [x] such that 7" = x'K.
([7 "] = [w M K] fulfils the equation)
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The power of KerMDH

Designated-verifier proof of membership:
Given [x] and [M], prove that x = Mw for some w.
Designated verifier keys: Secret K, public [MK].
Proof: [x] such that 7" = x'K.
([7 "] = [w M K] fulfils the equation)

Using D, «x-KerDH, Publicly verifiable proof:
Public parameters: [M], [M'K], [A], [KA], A < Dy.
Proof: [r] such that e([w "], [A]) = e([x ], [KA]).

T A=Xx'KA & (' —x'K)A=0 = = =x'K

or Dy x-KerDH is easy.
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Hardness of KerDH

o Hard instances: D, x hard for k > 1, implies that
D, x-KerDH is hard in the generic k-linear group model

o Algebraic Reductions:
If B= LAR then Dg,-KerDH = D},-KerDH
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Hardness of KerDH

o Hard instances: D, x hard for k > 1, implies that
D, x-KerDH is hard in the generic k-linear group model

o Algebraic Reductions:
If B= LAR then Dg,-KerDH = D},-KerDH

o Increasing Hardness: For the typical families of hard D x
of increasing size
Dy, -KerDH = D{-KerDH

Dy ' -KerDH <+ Df-KerDH
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Hardness of KerDH

o Hard instances: D, x hard for k > 1, implies that
Dy x-KerDH is hard in the generic k-linear group model

o Algebraic Reductions:
If B= LAR then Dg,-KerDH = D} -KerDH

o Increasing Hardness: For the typical families of hard D x
of increasing size
Dy, ,-KerDH = D{-KerDH

Dy, ,-KerDH < Dj-KerDH
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Hardness of KerDH

o Hard instances: D, x hard for k > 1, implies that
Dy x-KerDH is hard in the generic k-linear group model

o Algebraic Reductions:
If B= LAR then Dg,-KerDH = D} -KerDH

o Increasing Hardness: For the typical families of hard D x
of increasing size
Dy, ,-KerDH = D{-KerDH

([ Dj.1-KerDH < Dj-KerDH |
Black-Box Separation
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Families with Increasing Hardness

[EHKRV13]

= = = =
Dy-MDDH  Dy-MDDH — D3-MDDH  D4-MDDH

= = =
Do-KerDH D3-KerDH D4-KerDH

[This work]

Valid for all families: k-Unif, k-Lin, k-Casc, k-SCasc.
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P1 B8 P> means that a reduction R solves Py using any
possible oracle solving P-.
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Black-Box Separations

P4 BB P> means that a reduction R solves P; using any
possible oracle solving P».

Black-box reductions between flexible problems are hard to find
(or they are very natural)

(R must work for all possible solutions of P5.)
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Black-Box Separations

P1 B8 P> means that a reduction R solves P; using any
possible oracle solving P-».

Black-box reductions between flexible problems are hard to find
(or they are very natural)

(R must work for all possible solutions of P5.)

Black-box separation means that every BB reduction fails for
some oracle for Po.
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Black-Box Separations

P4 55 P> means that a reduction R solves P; using any
possible oracle solving P-».

Black-box reductions between flexible problems are hard to find
(or they are very natural)

(R must work for all possible solutions of P5.)

Black-box separation means that every BB reduction fails for
some oracle for Po.

We impose some extra requirements to R:
o ltis generic (it works on the generic k-linear group model),
o It makes a constant number of calls Q to the P, oracle.
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BB Separation: Reduction Splitting

000

> Kk + 1

[A]

Dy -KerDH £ D -KerDH for k > k

$
'
Ro ——| Ri V] = [u+n(w)
) S W€ lkerAT]
Ay,
Q — 1 queries last query
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BB Separation: Reduction Splitting

Dy x-KerDH R D~~-KerDH for k > Kk

$
!
[A] Ro S R [v] = [u+n(w)]
[w] € [ker AT]
Do
Q — 1 queries last query

o Generic model: 7 is linear and it only depends on $.
o dimim(n) < k
C. Rafols, P. Morillo and J. L. Villar The Kernel MDH Assumption



A (r, ¢)-collection of vector subspaces S is k-elusive if given
any k-vector subspace F,

Pr[SN F # {0} : S+ S] € negl




Hardness
[ee]e]e] ]

BB Separation: Query Supression

Definition (k-Elusiveness)

A (r, ¢)-collection of vector subspaces S is k-elusive if given
any k-vector subspace F,

Pr[SN F # {0} : S < S] € negl
Lemma

For any hard matrix distribution D, x, the collection of
subspaces {ker AT} acp, , is k-elusive.
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BB Separation: Query Supression

Definition (k-Elusiveness)

A (r, ¢)-collection of vector subspaces S is k-elusive if given
any k-vector subspace F,

Pr[SN F # {0} : S < S] € negl

Lemma
For any hard matrix distribution D, x, the collection of

subspaces {ker AT} acp, , is k-elusive.
We prove the last oracle call does not help the reduction.

By induction, if R exists then D, ,-KerDH can be solved directly
(e.g. Q=0).

Larger Kernel Problems are strictly harder!
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A New Matrix Distribution With ¢ > k + 1

(k, d)-Circ: A compact hard matrix distribution with ¢ > k + 1

Iy 0
: t
ty :
Ak, d)-circ = | 1 ta t
1 . :
ly
0 1
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A New Matrix Distribution With ¢ > k + 1

(k, d)-Circ: A compact hard matrix distribution with ¢ > k + 1

t 0
. t1
ty :
Ak, ay-circ = | 1 ty t
1 - :
ta
0 1

o Optimal representation size for hard (k + d) x k polynomial
matrix distributions of degree 1

o Application: Compact public key structure preserving
commitments to vectors (see paper)
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Generic Hardness of (k, d)-Circ

A(t) has a constant nonzero k-minor (The “easy case” of the
Determinant Criterion for ¢ > k + 1 in [Herold2014])

The principal ideal (d) used in the case ¢ = k + 1 is replaced by
the ideal J generated by all the (k + 1)-minors of (A(t)||2).
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Generic Hardness of (k, d)-Circ

A(t) has a constant nonzero k-minor (The “easy case” of the
Determinant Criterion for ¢ > k + 1 in [Herold2014])

The principal ideal (d) used in the case ¢ = k + 1 is replaced by
the ideal J generated by all the (k + 1)-minors of (A(t)||2).

Only polynomials p in J can be used successfully by a solver of
(k, d)-Circ-MDDH.
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Generic Hardness of (k, d)-Circ

A(t) has a constant nonzero k-minor (The “easy case” of the
Determinant Criterion for ¢ > k + 1 in [Herold2014])

The principal ideal (d) used in the case ¢ = k + 1 is replaced by
the ideal J generated by all the (k + 1)-minors of (A(t)||2).

Only polynomials p in J can be used successfully by a solver of
(k, d)-Circ-MDDH.

We prove that the set of (k + 1)-minors of (A(t)|z) for

(k, d)-Circ is a Grobner basis of J, and all minors have total
degree k + 1. Then, no nonzero polynomial of degree < k exist
inJ.
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Any hard polynomial matrix distribution Dé « of degree 1, has at
least { — k parameters.
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Optimal Compactness of (k, d)-Circ

Theorem

Any hard polynomial matrix distribution Dé « of degree 1, has at
least { — k parameters.

If d < ¢ — k: apply gaussian row elimination with scalar
coefficients to the matrix A(t) < Dgyk to put at least
¢ —(d+1) > k zeros in the first column.

There exists an invertible matrix L € GL,(Zq) such that LA(t)
has an identically zero k-minor.

LA(t) defines an easy MDDH problem. Therefore, D, x-MDDH
is also easy.
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The End!

C. Rafols, P. Morillo and J. L. Villar The Kernel MDH Assumption



	
	Introduction
	The Kernel Matrix Diffie-Hellman Assumption
	Hardness of the KerDH Assumption
	The Case > k+1


