The Kernel Matrix Diffie-Hellman Assumption

Carla Ràfols¹, Paz Morillo² and Jorge L. Villar²

¹ Universitat Pompeu Fabra (UPF) Spain

² Universitat Politècnica de Catalunya (UPC) Spain

MAK

Matemática Aplicada a la Criptografía

Asiacrypt 2016, Hanoi, 8 Dec 2016

Outline

Introduction

- Introduction
- The Kernel Matrix Diffie-Hellman Assumption
- Hardness of the KerDH Assumption
- The Case $\ell > k+1$

Additive (Implicit) Notation

Introduction

Given a group \mathcal{G} of prime order q and a generator $g \in \mathcal{G}$:

$$\begin{array}{cccc}
g^{x} & \rightarrow & [x] \\
g & \rightarrow & [1] \\
1 & \rightarrow & [0] \\
g^{x}g^{y} & \rightarrow & [x][y] = [x+y] \\
(g^{x})^{y} & \rightarrow & [x]^{y} = [xy] \\
(g^{x_{1}}, \dots, g^{x_{n}}) & \rightarrow & [x_{1}, \dots, x_{n}] \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
g^{x_{n1}} \cdots g^{x_{nm}} & \rightarrow & \begin{bmatrix} x_{11} \cdots x_{1m} \\ \vdots & \vdots \\ x_{n1} \cdots x_{nm} \end{bmatrix}
\end{array}$$

Given a (symmetric) bilinear map $e: \mathcal{G} \times \mathcal{G} \to \mathcal{G}_T$:

$$e(g^x, g^y) = g_T^{xy} \rightarrow e([x], [y]) = [xy]_T$$

Introduction

Subspace Membership Problems

For a (k, ℓ) -collection of vector subspaces of dimension k, $S = \{S_i\}_{i \in \mathcal{I}}$, of the vector space \mathbb{Z}_q^{ℓ} , where $0 < k < \ell$

Definition (Subspace Membership Problem)

Given \mathcal{G} and g, tell apart

$$D_{\text{real}} = ([S], [\mathbf{z}])$$
 for random $S \leftarrow S$ and $\mathbf{z} \leftarrow S$

$$D_{\mathsf{random}} = ([S], [\mathbf{z}]) \text{ for random } S \leftarrow \mathcal{S} \text{ and } \mathbf{z} \leftarrow \mathbb{Z}_q^{\ell}$$

Subspace Membership Problems

For a (k, ℓ) -collection of vector subspaces of dimension k, $\mathcal{S} = \{S_i\}_{i \in \mathcal{I}}$, of the vector space $\mathbb{Z}_{\sigma}^{\ell}$, where $0 < k < \ell$

Definition (Subspace Membership Problem)

Given \mathcal{G} and g, tell apart

Introduction

$$D_{\text{real}} = ([S], [\mathbf{z}])$$
 for random $S \leftarrow S$ and $\mathbf{z} \leftarrow S$

$$D_{\mathsf{random}} = ([S], [\mathbf{z}]) \text{ for random } S \leftarrow \mathcal{S} \text{ and } \mathbf{z} \leftarrow \mathbb{Z}_q^{\ell}$$

Typically, $S = \operatorname{Span} A$, where $A \in \mathbb{Z}_{\sigma}^{\ell \times k}$ and $\operatorname{rank} A = k$.

Subspace Membership Problems

DDH:
$$A(\mathbf{a}) = \begin{pmatrix} 1 \\ \mathbf{a} \end{pmatrix}$$
 $\mathbf{a} \leftarrow \mathbb{Z}_q$

$$\mathbf{z} = \begin{pmatrix} 1 \\ \mathbf{a} \end{pmatrix} (\mathbf{w}) = \begin{pmatrix} \mathbf{w} \\ \mathbf{a} \mathbf{w} \end{pmatrix} \text{ vs. } \mathbf{z} = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$$

2-Lin:
$$A(a_1, a_2) = \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \\ 1 & 1 \end{pmatrix}$$
 $a_1, a_2 \leftarrow \mathbb{Z}_q$

$$\mathbf{z} = \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} a_1 w_1 \\ a_2 w_2 \\ w_1 + w_2 \end{pmatrix} \text{ vs. } \mathbf{z} = \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix}$$

Subspace Membership Problems

DDH:
$$A(a) = \begin{pmatrix} 1 \\ a \end{pmatrix}$$
 $a \leftarrow \mathbb{Z}_q$

$$\mathbf{z} = \begin{pmatrix} 1 \\ a \end{pmatrix} (w) = \begin{pmatrix} w \\ aw \end{pmatrix} \text{ vs. } \mathbf{z} = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$$
"Matrix distributions"
$$\mathbf{z} = \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a_1 & w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} a_1 & w_1 \\ a_2 & w_2 \\ w_1 + w_2 \end{pmatrix} \text{ vs. } \mathbf{z} = \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix}$$

Matrix Distributions

Given $1 \le k < \ell$,

Definition (Polynomial Matrix Distribution)

 $A \leftarrow \mathcal{D}_{\ell,k}^f$, where $A \in \mathbb{Z}_q^{\ell \times k}$, rank A = k and A is sampled according to $A = f(a_1, \ldots, a_d)$, where $a_1, \ldots, a_d \leftarrow \mathbb{Z}_q$ and f is a polynomial map of constant degree.

Matrix Distributions

Given $1 \le k < \ell$,

Definition (Polynomial Matrix Distribution)

 $A \leftarrow \mathcal{D}_{\ell,k}^f$, where $A \in \mathbb{Z}_q^{\ell \times k}$, rank A = k and A is sampled according to $A = f(a_1, \ldots, a_d)$, where $a_1, \ldots, a_d \leftarrow \mathbb{Z}_q$ and f is a polynomial map of constant degree.

- We also tolerate $Pr(rank A < k) \in \mathbf{negl}$.
- We focus on the case $\ell = k + 1$, and deg f = 1

Matrix Distributions

Given $1 \le k < \ell$,

Definition (Polynomial Matrix Distribution)

 $A \leftarrow \mathcal{D}_{\ell,k}^f$, where $A \in \mathbb{Z}_q^{\ell \times k}$, rank A = k and A is sampled according to $A = f(a_1, \ldots, a_d)$, where $a_1, \ldots, a_d \leftarrow \mathbb{Z}_q$ and f is a polynomial map of constant degree.

- We also tolerate $Pr(\operatorname{rank} A < k) \in \mathbf{negl}$.
- We focus on the case $\ell = k + 1$, and deg f = 1

E.g.
$$A(a) = \begin{pmatrix} 1 \\ a \end{pmatrix}$$
 $A(a_1, a_2) = \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \\ 1 & 1 \end{pmatrix}$

Introduction

Matrix Decision Diffie-Hellman (MDDH) Problems

Definition ($\mathcal{D}_{\ell,k}^{A}$ -MDDH Problem [EHKRV13])

Tell apart the two probability distributions

$$D_{\text{real}} = (\mathcal{G}, q, g, [A(t)], [A(t)w]), t \leftarrow \mathbb{Z}_q^d, w \leftarrow \mathbb{Z}_q^k$$

$$D_{\mathsf{random}} = (\mathcal{G}, q, g, [A(t)], [z]), \ t \leftarrow \mathbb{Z}_q^d, \ z \leftarrow \mathbb{Z}_q^\ell$$

The $\mathcal{D}_{\ell,k}^A$ -MDDH Assumption states that the above problem is hard, w.r.t. and instance generator $(q, \mathcal{G}, g) \leftarrow \mathcal{I}$

Introduction

Matrix Decision Diffie-Hellman (MDDH) Problems

Definition ($\mathcal{D}_{\ell k}^{A}$ -MDDH Problem [EHKRV13])

Tell apart the two probability distributions

$$D_{\text{real}} = (\mathcal{G}, q, g, [A(\textbf{\textit{t}})], [A(\textbf{\textit{t}})\textbf{\textit{w}}]), \ \textbf{\textit{t}} \leftarrow \mathbb{Z}_q^d, \ \textbf{\textit{w}} \leftarrow \mathbb{Z}_q^k$$

$$D_{\mathsf{random}} = (\mathcal{G}, q, g, [A(t)], [z]), \ t \leftarrow \mathbb{Z}_q^d, \ z \leftarrow \mathbb{Z}_q^\ell$$

The $\mathcal{D}_{\ell k}^{A}$ -MDDH Assumption states that the above problem is hard, w.r.t. and instance generator $(q, \mathcal{G}, q) \leftarrow \mathcal{I}$

Generic hardness depends on the degree and irreducibility of the determinant polynomial $\mathfrak{d}(t,z) = \det(A(t)||z)$

Known Instances

Introduction 0000000

$$A_{k\text{-Unif}} = \begin{pmatrix} t_{1,1} & \cdots & t_{1,k} \\ \vdots & \ddots & \vdots \\ t_{k+1,1} & \cdots & t_{k+1,k} \end{pmatrix}$$

$$A_{k ext{-Unif}} = egin{pmatrix} t_{1,1} & \cdots & t_{1,k} \ dots & \ddots & dots \ t_{k+1,1} & \cdots & t_{k+1,k} \end{pmatrix} \qquad A_{k ext{-Lin}} = egin{pmatrix} t_1 & 0 & \cdots & 0 \ 0 & t_2 & \ddots & dots \ dots & \ddots & \ddots & 0 \ 0 & \cdots & 0 & t_k \ 1 & 1 & \cdots & 1 \end{pmatrix}$$

$$A_{k\text{-Casc}} = \begin{pmatrix} t_1 & 0 & \cdots & 0 \\ 1 & t_2 & \ddots & \vdots \\ 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & 1 & t_k \\ 0 & \cdots & 0 & 1 \end{pmatrix} \qquad A_{k\text{-SCasc}} = \begin{pmatrix} t & 0 & \cdots & 0 \\ 1 & t & \ddots & \vdots \\ 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & 1 & t \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

$$A_{k\text{-SCasc}} = \begin{pmatrix} t & 0 & \cdots & 0 \\ 1 & t & \ddots & \vdots \\ 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & 1 & t \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

Applications

Some known applications:

- Public key encryption
- Hash Proof systems
- Pseudorandom functions
- Non-interactive Zero-Knowledge proofs (Groth-Sahai)
- Efficient Proofs for CRS-Dependent Languages

Key idea: Most constructions based on DDH or 2-Lin are actually valid for any MDDH problem

We can obtain

- more compact instances
- more secure instances (secure even when an efficient multilinear map is available)

Outline

- 1 Introduction
- 2 The Kernel Matrix Diffie-Hellman Assumption
- 3 Hardness of the KerDH Assumption
- 4 The Case $\ell > k+1$

Flexible Computational Matrix Problems

Decision problems: natural model for indistinguishability adversarial capabilities (IND-CPA, pseudorandomness,...).

Flexible Computational Matrix Problems

Decision problems: natural model for indistinguishability adversarial capabilities (IND-CPA, pseudorandomness,...).

(Flexible) computational problems: Capture forgery adversarial capabilities. E.g. breaking

- unforgeability of a digital signature
- soundness of a ZK argument
- binding property of a commitment

Flexible Computational Matrix Problems

Decision problems: natural model for indistinguishability adversarial capabilities (IND-CPA, pseudorandomness,...).

(Flexible) computational problems: Capture forgery adversarial capabilities. E.g. breaking

- unforgeability of a digital signature
- soundness of a ZK argument
- binding property of a commitment
- ...

We unify some existing flexible computational problems in the literature in a single framework.

The Kernel Matrix Diffie-Hellman Assumption

For a (r, ℓ) -collection of vector subspaces of dimension r, $S = \{S_i\}_{i \in \mathcal{I}}$, of the vector space \mathbb{Z}_q^{ℓ} , where $0 < r < \ell$

Definition (Subspace Sampling Problem)

Given \mathcal{G} , g and [S], find [x] where x is a nonzero vector in S

Typically $S = \ker A^{\top}$, where $A \in \mathbb{Z}_q^{\ell \times k}$, rank A = k and $r = \ell - k$.

The Kernel Matrix Diffie-Hellman Assumption

For a (r, ℓ) -collection of vector subspaces of dimension r, $S = \{S_i\}_{i \in \mathcal{I}}$, of the vector space \mathbb{Z}_q^{ℓ} , where $0 < r < \ell$

Definition (Subspace Sampling Problem)

Given \mathcal{G} , g and [S], find [x] where x is a nonzero vector in S

Typically $S = \ker A^{\top}$, where $A \in \mathbb{Z}_{q}^{\ell \times k}$, rank A = k and $r = \ell - k$.

Definition ($\mathcal{D}_{\ell_k}^A$ -KerMDH Problem)

Given [A], where $A \leftarrow \mathcal{D}_{\ell,k}$ find a nonzero vector [x] such that $\mathbf{x}^{\mathsf{T}} A = \mathbf{0}.$

The $\mathcal{D}_{\ell k}^{A}$ -KerDH Assumption states that the above problem is hard, w.r.t. and instance generator $(q, \mathcal{G}, q) \leftarrow \mathcal{I}$

KerMDH Examples

DDH Kernel:
$$A(a) = \begin{pmatrix} 1 \\ a \end{pmatrix}$$
 $a \leftarrow \mathbb{Z}_q$

Given [A], find $[x_1, x_2] \neq [\mathbf{0}]$ such that

$$\begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} 1 \\ a \end{pmatrix} = x_1 + ax_2 = 0$$

2-Lin Kernel:
$$A(a_1, a_2) = \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \\ 1 & 1 \end{pmatrix} \quad a_1, a_2 \leftarrow \mathbb{Z}_q$$

Given [A], find $[x_1, x_2, x_3] \neq [\mathbf{0}]$ such that

$$\begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} a_1 x_1 + x_3 & a_2 x_2 + x_3 \end{pmatrix} = \mathbf{0}$$

KerMDH Examples

DDH Kernel:
$$A(a) = \begin{pmatrix} 1 \\ a \end{pmatrix}$$
 $a \leftarrow \mathbb{Z}_q$

Given [A], find
$$[x_1, x_2] \neq [\mathbf{0}]$$
 such that $(x_1 \quad x_2) \begin{pmatrix} 1 \\ a \end{pmatrix} = x_1 + ax_2 = 0$

Just Take

$$[x_1, x_2] = [-a, 1]!$$

2-Lin Kernel:
$$A(a_1, a_2) = \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \\ 1 & 1 \end{pmatrix} \quad a_1, a_2 \leftarrow \mathbb{Z}_q$$

Given [A], find $[x_1, x_2, x_3] \neq [\mathbf{0}]$ such that

$$\begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} a_1 x_1 + x_3 & a_2 x_2 + x_3 \end{pmatrix} = \mathbf{0}$$

KerMDH Examples

DDH Kernel:
$$A(a) = \begin{pmatrix} 1 \\ a \end{pmatrix}$$
 $a \leftarrow \mathbb{Z}_q$

Given [A], find
$$[x_1, x_2] \neq [0]$$
 such that $(x_1, x_2) \begin{pmatrix} 1 \\ a \end{pmatrix} = x_1 + ax_2 = 0$

Just Take

$$[x_1, x_2] = [-a, 1]!$$

2-Lin Kernel:
$$A(a_1, a_2) = \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \\ 1 & 1 \end{pmatrix} \quad a_1, a_2 \leftarrow \mathbb{Z}_q$$

Given [A], find $[x_1, x_2, x_3] \neq [\mathbf{0}]$ such that

$$\begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} a_1 x_1 + x_3 & a_2 x_2 + x_3 \end{pmatrix} = \mathbf{0}$$

 $[x_1, x_2, x_3] = [-a_2\lambda, -a_1\lambda, a_1a_2\lambda]$ for some λ . Hard to compute from $[a_1]$, $[a_2]$!

More Examples

Lemma (KerMDH vs. MDDH)

In pairing groups, $\mathcal{D}_{\ell,k}^{A}$ -MDDH $\Rightarrow \mathcal{D}_{\ell,k}^{A}$ -KerDH

 D_{real} :

$$\mathbf{x}^{\mathsf{T}} A \mathbf{w} = 0 \quad \Rightarrow \quad \mathbf{x}^{\mathsf{T}} (A \mathbf{w}) = 0 \quad \Rightarrow \quad e([\mathbf{x}^{\mathsf{T}}], [A \mathbf{w}]) = [0]_{\mathsf{T}}$$

 D_{random} :

$$\mathbf{z} \leftarrow \mathbb{Z}_q^\ell \quad \Rightarrow \quad \mathbf{x}^{\top} \mathbf{z} \neq \mathbf{0} \quad \Rightarrow \quad e([\mathbf{x}^{\top}], [A\mathbf{w}]) \neq [\mathbf{0}]_{\mathcal{T}} \quad \text{w.o.p.}$$

More Examples

Lemma (KerMDH vs. MDDH)

In pairing groups, $\mathcal{D}_{\ell,k}^{A}$ -MDDH $\Rightarrow \mathcal{D}_{\ell,k}^{A}$ -KerDH

 D_{real} :

$$\mathbf{x}^{\mathsf{T}} A \mathbf{w} = 0 \quad \Rightarrow \quad \mathbf{x}^{\mathsf{T}} (A \mathbf{w}) = 0 \quad \Rightarrow \quad e([\mathbf{x}^{\mathsf{T}}], [A \mathbf{w}]) = [0]_{\mathsf{T}}$$

 $D_{\rm random}$:

$$\mathbf{z} \leftarrow \mathbb{Z}_q^\ell \quad \Rightarrow \quad \mathbf{x}^{\top} \mathbf{z} \neq \mathbf{0} \quad \Rightarrow \quad \mathbf{e}([\mathbf{x}^{\top}], [A\mathbf{w}]) \neq [\mathbf{0}]_T \quad \text{w.o.p.}$$

All hard MDDH instances define hard KerMDH instances: *k*-Unif, *k*-Lin, *k*-Casc, *k*-SCasc, . . .

The KerMDH Family

- KerMDH integrates some previously known assumptions:
 - Find-Rep [Brands93]
 - Simultaneous Double Pairing [AFGHO10]
 - Triple Pairing [Groth10]
 - Simultaneous Pairing [GL07]
 - 1-Flexible Diffie-Hellman [LV08]
 - 1-Flexible Square Diffie-Hellman [LPV05]

The KerMDH Family

- KerMDH integrates some previously known assumptions:
 - Find-Rep [Brands93]
 - Simultaneous Double Pairing [AFGHO10]
 - Triple Pairing [Groth10]
 - Simultaneous Pairing [GL07]
 - 1-Flexible Diffie-Hellman [LV08]
 - 1-Flexible Square Diffie-Hellman [LPV05]
- Applications:
 - Homomorphic Signatures [LPJY13]
 - Quasi-Adaptive NIZK [KW15]
 - Trapdoor Commitments to Group Elements
 - Structure Preserving Signatures [KPW15], ...

The power of KerMDH

Designated-verifier proof of membership:

Given [x] and [M], prove that x = Mw for some w.

Designated verifier keys: Secret K, public $[M^TK]$.

Proof: $[\pi]$ such that $\pi^{\top} = \mathbf{x}^{\top} K$.

 $([\pi^\top] = [\mathbf{w}^\top M^\top K]$ fulfils the equation)

The power of KerMDH

Designated-verifier proof of membership:

Given [x] and [M], prove that x = Mw for some w.

Designated verifier keys: Secret K, public $[M^TK]$.

Proof: $[\pi]$ such that $\pi^{\top} = \mathbf{x}^{\top} K$.

 $([\pi^{\top}] = [\mathbf{w}^{\top}M^{\top}K]$ fulfils the equation)

Using $\mathcal{D}_{\ell,k}$ -KerDH, Publicly verifiable proof:

Public parameters: $[M], [M^TK], [A], [KA], A \leftarrow \mathcal{D}_{\ell,k}$.

Proof: $[\pi]$ such that $e([\pi^\top], [A]) = e([\mathbf{x}^\top], [KA])$.

$$\boldsymbol{\pi}^{\top} A = \boldsymbol{x}^{\top} K A \quad \Leftrightarrow \quad (\boldsymbol{\pi}^{\top} - \boldsymbol{x}^{\top} K) A = \boldsymbol{0} \quad \Rightarrow \quad \boldsymbol{\pi}^{\top} = \boldsymbol{x}^{\top} K$$

or $\mathcal{D}_{\ell,k}$ -KerDH is easy.

Outline

- 1 Introduction
- 2 The Kernel Matrix Diffie-Hellman Assumption
- 3 Hardness of the KerDH Assumption
- 4 The Case $\ell > k+1$

• Hard instances: $\mathcal{D}_{\ell,k}$ hard for k > 1, implies that $\mathcal{D}_{\ell,k}$ -KerDH is hard in the generic k-linear group model

- Hard instances: $\mathcal{D}_{\ell,k}$ hard for k > 1, implies that $\mathcal{D}_{\ell,k}$ -KerDH is hard in the generic k-linear group model
- Algebraic Reductions: If B = LAR then $\mathcal{D}_{\ell k}^{B}$ -KerDH $\Rightarrow \mathcal{D}_{\ell k}^{A}$ -KerDH

- Hard instances: $\mathcal{D}_{\ell,k}$ hard for k > 1, implies that $\mathcal{D}_{\ell,k}$ -KerDH is hard in the generic k-linear group model
- Algebraic Reductions: If B = LAR then $\mathcal{D}_{\ell,k}^B$ -KerDH $\Rightarrow \mathcal{D}_{\ell,k}^A$ -KerDH
- **Increasing Hardness:** For the typical families of hard $\mathcal{D}_{\ell,k}$ of increasing size \mathcal{D}_{k+1}^{A} -KerDH $\Rightarrow \mathcal{D}_{k}^{A}$ -KerDH

$$\mathcal{D}_{k+1}^{A}$$
-KerDH $\notin \mathcal{D}_{k}^{A}$ -KerDH

- Hard instances: $\mathcal{D}_{\ell,k}$ hard for k > 1, implies that $\mathcal{D}_{\ell k}$ -KerDH is hard in the generic k-linear group model
- Algebraic Reductions: If B = LAR then $\mathcal{D}_{\ell k}^B$ -KerDH $\Rightarrow \mathcal{D}_{\ell k}^A$ -KerDH
- Increasing Hardness: For the typical families of hard $\mathcal{D}_{\ell,k}$ of increasing size \mathcal{D}_{k+1}^{A} -KerDH $\Rightarrow \mathcal{D}_{k}^{A}$ -KerDH

$$\mathcal{D}_{k+1}^{A}$$
-KerDH $\notin \mathcal{D}_{k}^{A}$ -KerDH **Explicit Reductions**

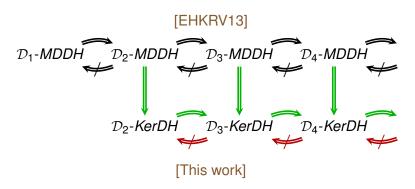
- Hard instances: $\mathcal{D}_{\ell,k}$ hard for k > 1, implies that $\mathcal{D}_{\ell k}$ -KerDH is hard in the generic k-linear group model
- Algebraic Reductions: If B = LAR then $\mathcal{D}_{\ell k}^B$ -KerDH $\Rightarrow \mathcal{D}_{\ell k}^A$ -KerDH
- Increasing Hardness: For the typical families of hard $\mathcal{D}_{\ell,k}$ of increasing size \mathcal{D}_{k+1}^{A} -KerDH $\Rightarrow \mathcal{D}_{k}^{A}$ -KerDH

$$\mathcal{D}_{k+1}^{A}$$
-KerDH $\notin \mathcal{D}_{k}^{A}$ -KerDH

Explicit Reductions

Black-Box Separation

Families with Increasing Hardness



Valid for all families: k-Unif, k-Lin, k-Casc, k-SCasc.

 $\mathcal{P}_1 \stackrel{\mathsf{BB}}{\Rightarrow} \mathcal{P}_2$ means that a reduction \mathcal{R} solves \mathcal{P}_1 using **any** possible oracle solving \mathcal{P}_2 .

 $\mathcal{P}_1 \stackrel{\text{BB}}{\Rightarrow} \mathcal{P}_2$ means that a reduction \mathcal{R} solves \mathcal{P}_1 using **any** possible oracle solving \mathcal{P}_2 .

Black-box reductions between flexible problems are hard to find (or they are very natural)

(\mathcal{R} must work for **all** possible solutions of \mathcal{P}_2 .)

 $\mathcal{P}_1 \stackrel{\text{BB}}{\Rightarrow} \mathcal{P}_2$ means that a reduction \mathcal{R} solves \mathcal{P}_1 using **any** possible oracle solving \mathcal{P}_2 .

Black-box reductions between flexible problems are hard to find (or they are very natural)

(\mathcal{R} must work for **all** possible solutions of \mathcal{P}_2 .)

Black-box separation means that every BB reduction fails for some oracle for \mathcal{P}_2 .

 $\mathcal{P}_1 \stackrel{\text{BB}}{\Rightarrow} \mathcal{P}_2$ means that a reduction \mathcal{R} solves \mathcal{P}_1 using **any** possible oracle solving \mathcal{P}_2 .

Black-box reductions between flexible problems are hard to find (or they are very natural)

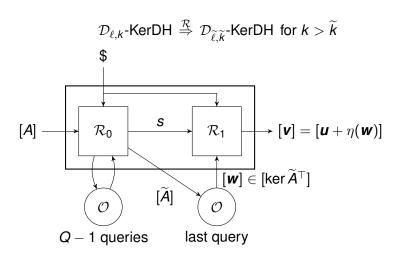
(\mathcal{R} must work for **all** possible solutions of \mathcal{P}_2 .)

Black-box separation means that every BB reduction fails for some oracle for \mathcal{P}_2 .

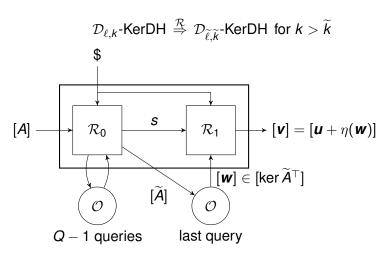
We impose some extra requirements to \mathcal{R} :

- It is generic (it works on the generic k-linear group model),
- It makes a constant number of calls Q to the \mathcal{P}_2 oracle.

BB Separation: Reduction Splitting



BB Separation: Reduction Splitting



- Generic model: η is linear and it only depends on \$.
- dim $Im(\eta) < k$

BB Separation: Query Supression

Definition (*k*-Elusiveness)

A (r, ℓ) -collection of vector subspaces S is k-elusive if given any k-vector subspace F,

$$\Pr[S \cap F \neq \{\mathbf{0}\} : S \leftarrow S] \in \mathbf{negl}$$

BB Separation: Query Supression

Definition (k-Elusiveness)

A (r, ℓ) -collection of vector subspaces S is k-elusive if given any k-vector subspace F,

$$\text{Pr}[\mathcal{S} \cap \mathcal{F} \neq \{\textbf{0}\}: \mathcal{S} \leftarrow \mathcal{S}] \in \textbf{negl}$$

Lemma

For any hard matrix distribution $\mathcal{D}_{\ell,k}$, the collection of subspaces $\{\ker A^{\top}\}_{A\in\mathcal{D}_{\ell,k}}$ is k-elusive.

BB Separation: Query Supression

Definition (k-Elusiveness)

A (r, ℓ) -collection of vector subspaces S is k-elusive if given any k-vector subspace F,

$$\Pr[S \cap F \neq \{\mathbf{0}\} : S \leftarrow S] \in \mathbf{negl}$$

Lemma

For any hard matrix distribution $\mathcal{D}_{\ell,k}$, the collection of subspaces $\{\ker A^{\top}\}_{A\in\mathcal{D}_{\ell,k}}$ is k-elusive.

We prove the last oracle call does not help the reduction.

By induction, if \mathcal{R} exists then $\mathcal{D}_{\ell,k}$ -KerDH can be solved directly (e.g. Q = 0).

Larger Kernel Problems are strictly harder!

Outline

- The Kernel Matrix Diffie-Hellman Assumption
- Hardness of the KerDH Assumption
- The Case $\ell > k+1$

A New Matrix Distribution With $\ell > k + 1$

(k, d)-Circ: A compact hard matrix distribution with $\ell > k+1$

$$A_{(k, d) ext{-Circ}} = egin{pmatrix} t_1 & & & & 0 \ dots & t_1 & & & \ t_d & dots & \ddots & & \ 1 & t_d & & & t_1 \ & 1 & \ddots & dots \ & & \ddots & dots \ 0 & & & 1 \end{pmatrix}$$

A New Matrix Distribution With $\ell > k + 1$

(k, d)-Circ: A compact hard matrix distribution with $\ell > k+1$

$$A_{(k, d) ext{-Circ}} = egin{pmatrix} t_1 & & & & 0 \ dots & t_1 & & & \ t_d & dots & \ddots & & \ 1 & t_d & & & t_1 \ & 1 & \ddots & dots \ & & \ddots & t_d \ 0 & & & 1 \end{pmatrix}$$

- Optimal representation size for hard $(k + d) \times k$ polynomial matrix distributions of degree 1
- Application: Compact public key structure preserving commitments to vectors (see paper)

A(t) has a constant nonzero k-minor (The "easy case" of the Determinant Criterion for $\ell > k+1$ in [Herold2014])

A(t) has a constant nonzero k-minor (The "easy case" of the Determinant Criterion for $\ell > k+1$ in [Herold2014])

The principal ideal (\mathfrak{d}) used in the case $\ell = k+1$ is replaced by the ideal \mathfrak{I} generated by all the (k+1)-minors of (A(t)||z).

A(t) has a constant nonzero k-minor (The "easy case" of the Determinant Criterion for $\ell > k+1$ in [Herold2014])

The principal ideal (\mathfrak{d}) used in the case $\ell = k+1$ is replaced by the ideal \mathfrak{I} generated by all the (k+1)-minors of (A(t)||z).

Only polynomials $\mathfrak p$ in $\mathfrak I$ can be used successfully by a solver of (k,d)-Circ-MDDH.

A(t) has a constant nonzero k-minor (The "easy case" of the Determinant Criterion for $\ell > k + 1$ in [Herold2014])

The principal ideal (\mathfrak{d}) used in the case $\ell = k + 1$ is replaced by the ideal \Im generated by all the (k+1)-minors of (A(t)||z).

Only polynomials \mathfrak{p} in \mathfrak{I} can be used successfully by a solver of (k, d)-Circ-MDDH.

We prove that the set of (k + 1)-minors of (A(t)|z) for (k, d)-Circ is a Gröbner basis of \mathfrak{I} , and all minors have total degree k + 1. Then, no nonzero polynomial of degree $\leq k$ exist in J.

Optimal Compactness of (k, d)-Circ

Theorem

Any hard polynomial matrix distribution $\mathcal{D}_{\ell,k}^{A}$ of degree 1, has at least $\ell-k$ parameters.

Optimal Compactness of (k, d)-Circ

Theorem

Any hard polynomial matrix distribution $\mathcal{D}_{\ell,k}^{A}$ of degree 1, has at least $\ell-k$ parameters.

If $d < \ell - k$: apply gaussian row elimination with scalar coefficients to the matrix $A(t) \leftarrow \mathcal{D}_{\ell,k}^f$ to put at least $\ell - (d+1) \geq k$ zeros in the first column.

There exists an invertible matrix $L \in GL_{\ell}(\mathbb{Z}_q)$ such that LA(t) has an identically zero k-minor.

LA(t) defines an easy MDDH problem. Therefore, $\mathcal{D}_{\ell,k}$ -MDDH is also easy.

The Kernel Matrix Diffie-Hellman Assumption

Carla Ràfols¹, Paz Morillo² and Jorge L. Villar²

¹ Universitat Pompeu Fabra (UPF) Spain

² Universitat Politècnica de Catalunya (UPC) Spain

MAK

Matemática Aplicada a la Criptografía

Asiacrypt 2016, Hanoi, 8 Dec 2016

The End!

