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Finite Field FQ, Q = pn

Sub-exponential expression:

LQ(a, c) = O
(

exp
(
(c + o(1))(log Q)a(log log Q)1−a

))
Classification:

Small characteristic: if a ≤ 1/3.
Medium characteristic: if 1/3 < a < 2/3.
Boundary case: if a = 2/3.
Large characteristic: if a > 2/3.
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Recent Progress on DLP over Finite Fields

Small characteristic case:
Development of the Function Field Sieve (FFS) algorithm has led
to a quasi-polynomial time algorithm.

Medium characteristic case:
Recent interest in the Number Field Sieve (NFS) algorithm.
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NFS for DLP Over FQ

f (x) and g(x) are polynomials over Z having a common
irreducible factor ϕ(x) of degree n over Fp.
α, β ∈ C are roots of f (x) and g(x); m ∈ Fpn is a root of ϕ(x).

Z[x ]

Z(α) Z(β)

Fp(m)

α
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m

m
7→β

Figure : The basic principle of NFS.
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Factor Basis

Number fields: K1 = Q[x ]/(f ) and K2 = Q[x ]/(g);

O1 and O2 are the ring of integers of K1 and K2 respectively.

Factor basis: prime ideals of O1 and O2 whose norms are at most
some pre-specified bound B.

Size of the factor basis: B1+o(1).
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Relation Collection

Polynomials φ(x) ∈ Z[x ] of degrees at most t − 1 are considered.

If the principal ideals φ(α)O1 and φ(β)O2 are both smooth over the
factor basis, then a relation among the factor basis elements is
obtained.

Formally, a linear relation between the discrete logs of certain
elements of Fpn is obtained.
Such discrete logs are called virtual logarithms.

A little more than B relations are collected.
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Polynomial Selection and Sizes of Norms

Norm of φ(α)O1 is Res(f , φ).
For ensuring smoothness of φ(α)O1 it is sufficient that Res(f , φ) is
B-smooth; similarly, for g(x).

|Res(f , φ)| = O
((
‖f‖∞

)t−1E2(deg f )/t
)

|Res(g, φ)| = O
((
‖g‖∞

)t−1E2(deg g)/t
)
,

E is such that ‖φ‖∞ ≈ E2/t and so E2 sieving polynomials φ are
considered.
The lower the norms, the easier it becomes to find a relation.
The norms are determined by ‖f‖∞, ‖g‖∞, deg f and deg g.
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Asymptotic Complexity

Asymptotic run time of NFS:
Medium prime case: LQ(1/3, (96/9)1/3).

Obtained using the Conjugation method.

Boundary case: LQ(1/3, (48/9)1/3) for cp = 121/3.
Obtained using the Conjugation method.
More complete analysis using the SS method.

Large prime case: LQ(1/3, (64/9)1/3).
Obtained using the GJL method.
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Tower Number Field Sieve Algorithm

Let n = ηκ and q = pη.

Tower field representation: Fpn = Fqκ .

Main idea for TNFS:
Suppose p = LQ(a, cp) with 1/3 < a < 2/3 and q = LQ(2/3, cp).
The boundary case complexity is achieved for the medium prime
case.

exTNFS: variant of TNFS proposed by Kim-Barbulescu (2016).
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Setting of exTNFS

Choose h(z) such that:
deg h = η; ‖h‖∞ is small; h(z) is irreducible over Fp.

Define
Fpη = Fp[z]/(h) and R = Z[z]/(h).

Choose f (x) and g(x) in Z [x ] such that:
Both are irreducible over R and over Fpη .
ϕ(x) = gcd(f (x),g(x)) is of degree κ and is irreducible over Fpη .

Fpn = Fpη [x ]/(ϕ) = (R/pR)[x ]/(ϕ).
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Kim-Barbulescu (2016)

Requires ϕ(x) over Fp having degree κ to be irreducible over Fpη .
This condition requires gcd(η, κ) = 1.
Applies to composite non prime-power n such as
n = 6,12,15,18,21, . . .
Cannot be applied to composite prime power n such as
n = 4,8,9,16, . . .

Medium prime case: complexity LQ(1/3, (48/9)1/3).
Previously known complexity LQ(1/3, (96/9)1/3).
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A New Polynomial Selection Method

Input:
p;
n = ηκ;
d a factor of κ;
r ≥ k = κ/d ;
λ ∈ {1, η}.

Random trials to find suitable f (x),g(x) and ϕ(x).
f (x) and g(x) are in R[x ] and are irreducible over R.
ϕ(x) ∈ Fpη [x ]; has degree κ and is irreducible over Fpη .
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Using LLL: Notation

Given a(x) ∈ R[x ] of degree k and positive integer r ≥ k , we define
a matrix Ma,r and a polynomial LLL(Ma,r ).

Suppose

a(x) = xk + ak−1(z)xk−1 + · · ·+ a1(z)x + a0(z)

where each ai has degree less than λ ∈ {1, η}.

Write

ai = (ai,0, . . . , ai,λ−1);

a = (a0,0, . . . , a0,λ−1, . . . , ak−1,0, . . . , ak−1,λ−1).
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The Matrix Ma,r



diagλk (p)
a 1

0λ−1,1+λk diagλ−1(p)
shiftλ(a) 1

0λ−1,1+λ(k+1) diagλ−1(p)
shift2λ(a) 1

. . .
. . .

0λ−1,1+λ(r−1) diagλ−1(p)
shift(r−k)λ(a) 1


(rλ+1)×(rλ+1)

Determinant of Ma,r is pr(λ−1)+k .
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The Polynomial LLL(Ma,r)

Apply the LLL algorithm to Ma,r and write the first row as:

[b0,0, . . . , b0,λ−1, b1,0, . . . , b1,λ−1, . . . , br−1,0, . . . , br−1,λ−1, br ].

This represents a polynomial b(x) ∈ R[x ] of degree r where

b(x) = b0(z) + b1(z)x + · · ·+ br−1(z)x r−1 + br x r ;

bi(z) = bi,0 + bi,1z + · · ·+ bi,λ−1zλ−1;

‖b‖∞ = Qε/n with ε =
r(λ− 1) + k

rλ+ 1
.

The polynomial b(x) is written as LLL(Ma,r ).
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Random Trials: Step 1

Choose a monic polynomial A1(x) ∈ R[x ] such that:
deg A1 = r + 1;
A1(x) is irreducible over R;
A1(x) has coefficient polynomials of size O(ln p);
over Fpη , A1(x) has an irreducible factor A2(x) of degree k such
that all coefficient polynomials of A2(x) have degrees at most
λ− 1.
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Random Trials: Step 2

Choose monic polynomials C0(x) and C1(x) with small integer
coefficients such that deg C1 < deg C0 = d .

Define:

f (x) = Resy (A1(y),C0(x) + y C1(x)) ;
ϕ(x) = Resy (A2(y),C0(x) + y C1(x)) mod p;
ψ(x) = LLL(MA2,r );

g(x) = Resy (ψ(y),C0(x) + y C1(x)) .
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Degrees and Norms

deg(f ) = d(r + 1); deg(g) = rd and deg(ϕ) = κ;
over Fpη , both f (x) and g(x) have ϕ(x) as a factor;
‖f‖∞ = O(ln(p)) and ‖g‖∞ = O(Qε/n).

For a sieving polynomial φ

N(f , φ) = E2d(r+1)/t × LQ(2/3,o(1));
N(g, φ) = E2dr/t ×Q(t−1)ε/κ × LQ(2/3,o(1)).
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Relation to Previous Works

Case η = 1: reduces to NFS.
λ must be 1; yields Algorithm-A (EC 2016).

Case η > 1 and λ = 1: ϕ(x) ∈ Fp; degϕ = κ;
irreducibility of ϕ(x) over Fpη requires gcd(η, κ) = 1.
Kim-Barbulescu (Crypto 2016) exTNFS methods are special
cases:
d = 1, k = κ yields exTNFS-GJL method; d = κ, r = k = 1 yields
exTNFS-Conjugation.

New Case: λ = η > 1: ϕ(x) is in Fpn \ Fp.
The condition gcd(η, κ) = 1 is not necessary for the irreducibility
of ϕ(x).
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Medium Prime Case: Asymptotic Complexity

Theorem
Let n = ηκ; κ = kd; r ≥ k; t ≥ 2; p = LQ(a, cp) with 1/3 < a ≤ 2/3;
η = cη(ln Q/ ln ln Q)2/3−a; cθ = cpcη. Runtime of the TNFS algorithm
with polynomials chosen by Algorithm C is LQ(1/3,2cb) where

cb =
2(2r + 1)

6cθkt
+

√(
2r + 1
3cθkt

)2

+
(t − 1)cθε

3
.
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Medium Prime Case: Asymptotic Complexity

Minimise cb with respect to cθ: minimum achieved for t = 2.

Case λ = 1: minimum value is(
32(2r + 1)

9(r + 1)

)1/3

which takes the minimum value of (48/9)1/3 for r = 1.
Either η = 1, a = 2/3 (boundary case), or, η > 1, 1/3 < a < 2/3
(medium prime case).
λ = 1 implies that the condition gcd(η, κ) = 1 is required.
The minimum complexity is not achieved for all values of cθ.
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Medium Prime Case: Asymptotic Complexity

Minimise cb with respect to cθ: minimum achieved for t = 2.

Case λ = η > 1: minimum attained for r = k = κ and the minimum
value is (

32(2n + η)

9(n + 1)

)1/3

.

η = 2: minimum is (64/9)1/3 ≈ 1.92 for all n = 2i .
η = 3, n = 9: minimum is (112/15)1/3 ≈ 1.95.
η = 5, n = 25: minimum is (880/117)1/3 ≈ 1.96.
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Asymptotic Complexity Plots
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Medium Prime Case: Continuing Story

Jeong and Kim (2016): achieved complexity (48/9)1/3 for all
composite n.
Sarkar and Singh (2016): a general polynomial selection method;
concrete analysis.
. . .
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Thank you for your kind attention!
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