A General Polynomial Selection Method and New Asymptotic Complexities for the Tower Number Field Sieve Algorithm

Palash Sarkar, Shashank Singh

Indian Statistical Institute INRIA, France

Asiacrypt 2016

Sarkar and Singh

Improved TNFS

Sub-exponential expression:

$$L_Q(\boldsymbol{a}, \boldsymbol{c}) = O\left(\exp\left((\boldsymbol{c} + \boldsymbol{o}(1))(\log Q)^{\boldsymbol{a}}(\log \log Q)^{1-\boldsymbol{a}}\right)\right)$$

Classification:

- Small characteristic: if $a \le 1/3$.
- Medium characteristic: if 1/3 < a < 2/3.
- Boundary case: if a = 2/3.
- Large characteristic: if a > 2/3.

Small characteristic case:

• Development of the Function Field Sieve (FFS) algorithm has led to a quasi-polynomial time algorithm.

Medium characteristic case:

• Recent interest in the Number Field Sieve (NFS) algorithm.

NFS for DLP Over \mathbb{F}_Q

- *f*(*x*) and *g*(*x*) are polynomials over Z having a common irreducible factor φ(*x*) of degree *n* over F_ρ.
- $\alpha, \beta \in \mathbb{C}$ are roots of f(x) and g(x); $m \in \mathbb{F}_{p^n}$ is a root of $\varphi(x)$.

Figure : The basic principle of NFS.

Number fields: $\mathbb{K}_1 = \mathbb{Q}[x]/(f)$ and $\mathbb{K}_2 = \mathbb{Q}[x]/(g)$;

 \mathcal{O}_1 and \mathcal{O}_2 are the ring of integers of \mathbb{K}_1 and \mathbb{K}_2 respectively.

Factor basis: prime ideals of \mathcal{O}_1 and \mathcal{O}_2 whose norms are at most some pre-specified bound *B*.

Size of the factor basis: $B^{1+o(1)}$.

Polynomials $\phi(x) \in \mathbb{Z}[x]$ of degrees at most t - 1 are considered.

If the principal ideals $\phi(\alpha)\mathcal{O}_1$ and $\phi(\beta)\mathcal{O}_2$ are both smooth over the factor basis, then a relation among the factor basis elements is obtained.

- Formally, a linear relation between the discrete logs of certain elements of F_{ρⁿ} is obtained.
- Such discrete logs are called virtual logarithms.

A little more than *B* relations are collected.

Polynomial Selection and Sizes of Norms

- Norm of $\phi(\alpha)\mathcal{O}_1$ is $\operatorname{Res}(f,\phi)$.
- For ensuring smoothness of φ(α)O₁ it is sufficient that Res(f, φ) is B-smooth; similarly, for g(x).

$$\begin{aligned} |\operatorname{Res}(f,\phi)| &= O\left(\left(\|f\|_{\infty}\right)^{t-1} E^{2(\deg f)/t}\right) \\ |\operatorname{Res}(g,\phi)| &= O\left(\left(\|g\|_{\infty}\right)^{t-1} E^{2(\deg g)/t}\right), \end{aligned}$$

- *E* is such that ||φ||_∞ ≈ E^{2/t} and so E² sieving polynomials φ are considered.
- The lower the norms, the easier it becomes to find a relation.
- The norms are determined by $||f||_{\infty}$, $||g||_{\infty}$, deg *f* and deg *g*.

Asymptotic run time of NFS:

- Medium prime case: $L_Q(1/3, (96/9)^{1/3})$.
 - Obtained using the Conjugation method.
- Boundary case: $L_Q(1/3, (48/9)^{1/3})$ for $c_p = 12^{1/3}$.
 - Obtained using the Conjugation method.
 - More complete analysis using the SS method.
- Large prime case: $L_Q(1/3, (64/9)^{1/3})$.
 - Obtained using the GJL method.

Let $n = \eta \kappa$ and $q = p^{\eta}$.

Tower field representation: $\mathbb{F}_{p^n} = \mathbb{F}_{q^{\kappa}}$.

Main idea for TNFS:

• Suppose $p = L_Q(a, c_p)$ with 1/3 < a < 2/3 and $q = L_Q(2/3, c_p)$.

 The boundary case complexity is achieved for the medium prime case.

exTNFS: variant of TNFS proposed by Kim-Barbulescu (2016).

Choose h(z) such that:

• deg $h = \eta$; $||h||_{\infty}$ is small; h(z) is irreducible over \mathbb{F}_p .

Define

$$\mathbb{F}_{p^{\eta}} = \mathbb{F}_{p}[z]/(h)$$
 and $R = \mathbb{Z}[z]/(h)$.

Choose f(x) and g(x) in Z[x] such that:

- Both are irreducible over R and over $\mathbb{F}_{p^{\eta}}$.
- $\varphi(x) = \text{gcd}(f(x), g(x))$ is of degree κ and is irreducible over $\mathbb{F}_{p^{\eta}}$.

 $\mathbb{F}_{p^n} = \mathbb{F}_{p^n}[x]/(\varphi) = (R/pR)[x]/(\varphi).$

- Requires φ(x) over F_ρ having degree κ to be irreducible over F_{ρ^η}.
- This condition requires $gcd(\eta, \kappa) = 1$.
- Applies to composite non prime-power n such as n = 6, 12, 15, 18, 21, ...
- Cannot be applied to composite prime power *n* such as $n = 4, 8, 9, 16, \ldots$

Medium prime case: complexity $L_Q(1/3, (48/9)^{1/3})$.

• Previously known complexity $L_Q(1/3, (96/9)^{1/3})$.

Input:

- p;
- $\mathbf{n} = \eta \kappa;$
- d a factor of κ;
- $r \geq k = \kappa/d;$
- $\lambda \in \{\mathbf{1}, \eta\}.$

Random trials to find suitable f(x), g(x) and $\varphi(x)$.

- f(x) and g(x) are in R[x] and are irreducible over R.
- $\varphi(x) \in \mathbb{F}_{p^{\eta}}[x]$; has degree κ and is irreducible over $\mathbb{F}_{p^{\eta}}$.

Given $\mathfrak{a}(x) \in R[x]$ of degree k and positive integer $r \ge k$, we define • a matrix $M_{\mathfrak{a},r}$ and a polynomial $\mathrm{LLL}(M_{\mathfrak{a},r})$. Suppose

$$\mathfrak{a}(x) = x^{k} + \mathfrak{a}_{k-1}(z)x^{k-1} + \cdots + \mathfrak{a}_{1}(z)x + \mathfrak{a}_{0}(z)$$

where each a_i has degree less than $\lambda \in \{1, \eta\}$.

Write

$$\begin{aligned} \mathfrak{a}_i &= (\mathfrak{a}_{i,0},\ldots,\mathfrak{a}_{i,\lambda-1}); \\ \mathfrak{a} &= (\mathfrak{a}_{0,0},\ldots,\mathfrak{a}_{0,\lambda-1},\ldots,\mathfrak{a}_{k-1,0},\ldots,\mathfrak{a}_{k-1,\lambda-1}). \end{aligned}$$

Determinant of $M_{a,r}$ is $p^{r(\lambda-1)+k}$.

Apply the LLL algorithm to $M_{a,r}$ and write the first row as:

$$[\mathfrak{b}_{0,0},\ldots,\mathfrak{b}_{0,\lambda-1},\mathfrak{b}_{1,0},\ldots,\mathfrak{b}_{1,\lambda-1},\ldots,\mathfrak{b}_{r-1,0},\ldots,\mathfrak{b}_{r-1,\lambda-1},\mathfrak{b}_r].$$

This represents a polynomial $\mathfrak{b}(x) \in R[x]$ of degree *r* where

$$\begin{split} \mathfrak{b}(x) &= \mathfrak{b}_0(z) + \mathfrak{b}_1(z)x + \dots + \mathfrak{b}_{r-1}(z)x^{r-1} + \mathfrak{b}_r x^r;\\ \mathfrak{b}_i(z) &= \mathfrak{b}_{i,0} + \mathfrak{b}_{i,1}z + \dots + \mathfrak{b}_{i,\lambda-1}z^{\lambda-1};\\ \|\mathfrak{b}\|_{\infty} &= Q^{\varepsilon/n} \text{ with } \varepsilon = \frac{r(\lambda-1)+k}{r\lambda+1}. \end{split}$$

The polynomial $\mathfrak{b}(x)$ is written as $LLL(M_{\mathfrak{a},r})$.

Choose a monic polynomial $A_1(x) \in R[x]$ such that:

- deg $A_1 = r + 1$;
- $A_1(x)$ is irreducible over R;
- $A_1(x)$ has coefficient polynomials of size $O(\ln p)$;
- over $\mathbb{F}_{p^{\eta}}$, $A_1(x)$ has an irreducible factor $A_2(x)$ of degree k such that all coefficient polynomials of $A_2(x)$ have degrees at most $\lambda 1$.

Choose monic polynomials $C_0(x)$ and $C_1(x)$ with small integer coefficients such that deg $C_1 < \deg C_0 = d$.

Define:

$$f(x) = \operatorname{Res}_{y} (A_{1}(y), C_{0}(x) + y C_{1}(x));$$

$$\varphi(x) = \operatorname{Res}_{y} (A_{2}(y), C_{0}(x) + y C_{1}(x)) \mod p;$$

$$\psi(x) = \operatorname{LLL}(M_{A_{2},r});$$

$$g(x) = \operatorname{Res}_{y} (\psi(y), C_{0}(x) + y C_{1}(x)).$$

- $\deg(f) = d(r+1); \deg(g) = rd \text{ and } \deg(\varphi) = \kappa;$
- over $\mathbb{F}_{p^{\eta}}$, both f(x) and g(x) have $\varphi(x)$ as a factor;
- $||f||_{\infty} = O(\ln(p))$ and $||g||_{\infty} = O(Q^{\varepsilon/n})$.

For a sieving polynomial ϕ

$$\begin{array}{lll} N(f,\phi) &=& E^{2d(r+1)/t} \times L_Q(2/3,o(1)); \\ N(g,\phi) &=& E^{2dr/t} \times Q^{(t-1)\varepsilon/\kappa} \times L_Q(2/3,o(1)). \end{array}$$

Case $\eta = 1$: reduces to NFS.

• λ must be 1; yields Algorithm- \mathcal{A} (EC 2016).

Case $\eta > 1$ and $\lambda = 1$: $\varphi(x) \in \mathbb{F}_{p}$; deg $\varphi = \kappa$;

- irreducibility of $\varphi(x)$ over $\mathbb{F}_{p^{\eta}}$ requires $gcd(\eta, \kappa) = 1$.
- Kim-Barbulescu (Crypto 2016) exTNFS methods are special cases:

d = 1, $k = \kappa$ yields exTNFS-GJL method; $d = \kappa$, r = k = 1 yields exTNFS-Conjugation.

New Case: $\lambda = \eta > 1$: $\varphi(x)$ is in $\mathbb{F}_{\rho^n} \setminus \mathbb{F}_{\rho}$.

The condition gcd(η, κ) = 1 is not necessary for the irreducibility of φ(x).

Theorem

Let $n = \eta \kappa$; $\kappa = kd$; $r \ge k$; $t \ge 2$; $p = L_Q(a, c_p)$ with $1/3 < a \le 2/3$; $\eta = c_{\eta} (\ln Q / \ln \ln Q)^{2/3-a}$; $c_{\theta} = c_p c_{\eta}$. Runtime of the TNFS algorithm with polynomials chosen by Algorithm C is $L_Q(1/3, 2c_b)$ where

$$c_b = \frac{2(2r+1)}{6c_{\theta}kt} + \sqrt{\left(\frac{2r+1}{3c_{\theta}kt}\right)^2 + \frac{(t-1)c_{\theta}\varepsilon}{3}}$$

Minimise c_b with respect to c_{θ} : minimum achieved for t = 2.

Case $\lambda = 1$: minimum value is

$$\left(\frac{32(2r+1)}{9(r+1)}
ight)^{1/3}$$

which takes the minimum value of $(48/9)^{1/3}$ for r = 1.

- Either $\eta = 1$, a = 2/3 (boundary case), or, $\eta > 1$, 1/3 < a < 2/3 (medium prime case).
- $\lambda = 1$ implies that the condition $gcd(\eta, \kappa) = 1$ is required.
- The minimum complexity is not achieved for all values of c_{θ} .

Minimise c_b with respect to c_{θ} : minimum achieved for t = 2.

Case $\lambda = \eta > 1$: minimum attained for $r = k = \kappa$ and the minimum value is

$$\left(\frac{32(2n+\eta)}{9(n+1)}\right)^{1/3}$$

• $\eta = 2$: minimum is $(64/9)^{1/3} \approx 1.92$ for all $n = 2^{i}$.

- $\eta = 3, n = 9$: minimum is $(112/15)^{1/3} \approx 1.95$.
- $\eta = 5$, n = 25: minimum is $(880/117)^{1/3} \approx 1.96$.

Asymptotic Complexity Plots

- Jeong and Kim (2016): achieved complexity (48/9)^{1/3} for all composite n.
- Sarkar and Singh (2016): a general polynomial selection method; concrete analysis.

Ο...

Thank you for your kind attention!

25/25

Sarkar and Singh

Improved TNFS

4th December, 2016