Design Strategies for ARX with Provable Bounds: SPARX and LAX

Daniel Dinu¹, <u>Léo Perrin¹</u>, Aleksei Udovenko¹, <u>Vesselin Velichkov¹</u>, Johann Großschädl¹, Alex Biryukov¹

¹SnT, University of Luxembourg https://www.cryptolux.org

> December 7, 2016 ASIACRYPT

Block Cipher Design

$$P_{\mathrm{diff}} \leq \left(rac{\Delta_{\mathcal{S}}}{2^{b}}
ight)^{\# \mathrm{~active~S-Boxes}}$$

Design of an S-Box based SPN (wide-trail strategy) Block Cipher Design

$$P_{\mathrm{diff}} \leq \left(rac{\Delta_{\mathcal{S}}}{2^{b}}
ight)^{\# \mathrm{~active~S-Boxes}}$$

Design of an S-Box based SPN (wide-trail strategy)

Design of an ARX-cipher (allegory) source: Wiki Commons Block Cipher Design

$$P_{\mathrm{diff}} \leq \left(rac{\Delta_{\mathcal{S}}}{2^{b}}
ight)^{\# \mathrm{~active~S-Boxes}}$$

Design of an S-Box based SPN (wide-trail strategy)

Can we use ARX and have provable bounds?

Cryptolux Team

SPARX and LAX

1 / 24

Talk Outline

Outline

The Long-Trail Strategy

2 The SPARX Family of LW-BC

- Methodology
- Results
- 3 The LAX Approach

4 Conclusion

The Long-Trail	Strategy
0000000000	

The LAX Approach

Conclusion 0

Plan

The Long-Trail Strategy

- The Wide Trail Strategy
- ARX-Boxes
- The Long Trail Strategy

2 The SPARX Family of LW-BC

- Methodology
- Results
- 3 The LAX Approach

4 Conclusion

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

The Wide Trail Strategy (WTS)

Wide Trail Argument

 $\mathsf{MEDCP}(F^r) \leq p_S^{a(r)}$

- MEDCP(F^r) = max (P[any trail covering r rounds of F])
- $P[S(x \oplus c) \oplus S(x) = d] \leq p_S$
- #{active S-Boxes on r rounds} $\ge a(r)$

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

The Wide Trail Strategy (WTS)

Wide Trail Argument

 $\mathsf{MEDCP}(F^r) \leq p_S^{a(r)}$

- MEDCP(F^r) = max (P[any trail covering r rounds of F])
- $P[S(x \oplus \mathbf{c}) \oplus S(x) = \mathbf{d}] \leq p_S$
- #{active S-Boxes on r rounds} $\ge a(r)$

Used to design the AES!

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

The Wide Trail Strategy (WTS)

Wide Trail Argument

 $\mathsf{MEDCP}(F^r) \leq p_S^{\mathbf{a}(r)}$

- MEDCP(F') = max (P[any trail covering r rounds of F])
- $P[S(x \oplus \mathbf{c}) \oplus S(x) = \mathbf{d}] \leq p_S$
- #{active S-Boxes on r rounds} $\ge a(r)$

Used to design the AES!

Application to ARX

Can we use this to build an ARX-based cipher?

Cryptolux Team

SPARX and LAX

3 / 24

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

ARX-Boxes (1/2)

SPECKEY

- **1** Start from SPECK-32
- 2 XOR key in full state (Markov assumption)
- 3 Find best trails

SPECKEY.

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

ARX-Boxes (1/2)

SPECKEY

- Start from SPECK-32
- 2 XOR key in full state (Markov assumption)
- 3 Find best trails

Parameter Search

- Rotations 7, -2
- Second best crypto properties, lightest
- Indeed NSA design strategy (see DAC'15).

SPECKEY.

Cryptolux Team

SPARX and LAX

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

ARX-Boxes (2/2)

Differential/Linear bounds

r	1	2	3	4	5	6	7	8	9	10
MEDCP(A ^r)	-0	-1	-3	-5	-9	-13	-18	-24	-30	-34
MELCC(A ^r)	0-0	-0	-1	-3	-5	-7	_9	-12	-14	-17

Maximum expected differential characteristic probabilities (MEDCP) and maximum expected absolute linear characteristic correlations (MELCC) of SPECKEY (log₂ scale); r is the number of rounds.

The Long-Trail Strategy	The SPARX Family of LW-BC	The LAX Approach	Conclusion 0

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

Naive Approach

S-Box: A⁴ ; Linear layer: 128-bit MixColumns.

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

Naive Approach

S-Box: A⁴ ; Linear layer: 128-bit MixColumns.

- Active ARX-Boxes:
 a(2s) ≥ 5s,
- $\bullet \log_2\left(\mathsf{MEDCP}(A^4)\right) = -5$

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

Naive Approach

S-Box: A⁴ ; Linear layer: 128-bit MixColumns.

 $\log_2(P[\text{diff. trail on } 2s \text{ steps}]) \le 5s \times \text{MEDCP}(A^4)$ $\log_2(P[\text{diff. trail on } 2s \text{ steps}]) \le -25s$

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

Naive Approach

S-Box: A⁴ ; Linear layer: 128-bit MixColumns.

$$\begin{split} \log_2(P[\text{diff. trail on 2s steps}]) &\leq 5s \times \text{MEDCP}(A^4) \\ \log_2(P[\text{diff. trail on 2s steps}]) &\leq -25s \\ \text{Need } 2\lceil 128/25 \rceil = 12 \text{ steps, i.e. } \textbf{48 ARX rounds!} \end{split}$$

Cryptolux Team

SPARX and LAX

The	Long-Trail	Strategy
000	0000000	

The LAX Approach

Conclusion 0

Drawbacks

The Wide Trail Strategy fails here

Two (bad) options:

- 1 design a very weak cipher, or
- **2** design a very slow cipher.

The	Long-Trail	Strategy
000	0000000	

The LAX Approach

Conclusion 0

Drawbacks

The Wide Trail Strategy fails here

Two (bad) options:

- 1 design a very weak cipher, or
- 2 design a very slow cipher.

A New Hope

■
$$\log_2 (MEDCP(A^4)) = -5$$

■ $\log_2 (MEDCP(A^8)) = -24 \ll -5 \times 2$

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

Better Approach

 New linear layer "chaining" ARX-Boxes.

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

Better Approach

 New linear layer "chaining" ARX-Boxes.

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

Better Approach

- New linear layer "chaining" ARX-Boxes.
- We can use MEDCP(A⁸) instead of (MEDCP(A⁴))².

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

Better Approach

- New linear layer "chaining" ARX-Boxes.
- We can use MEDCP(A⁸) instead of (MEDCP(A⁴))².
- If left half has zero differences,

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

Better Approach

- New linear layer "chaining" ARX-Boxes.
- We can use MEDCP(A⁸) instead of (MEDCP(A⁴))².
- If left half has zero differences, we can use MEDCP(A¹²) instead of (MEDCP(A⁴))³.

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

The Long Trail Argument (1/2)

Definition (Long Trail)

A Long Trail (LT) is a trail covering several ARX-Boxes without receiving any outside difference. Can be *static* (probability = 1) or *dynamic* (depends on the trail).

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

The Long Trail Argument (1/2)

Definition (Long Trail)

A Long Trail (LT) is a trail covering several ARX-Boxes without receiving any outside difference. Can be *static* (probability = 1) or *dynamic* (depends on the trail).

Definition (Truncated Trail)

A sequence of values in $\{0, 1\}^4$: 1 if ARX-Box *i* is active, else 0.

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

The Long Trail Argument (2/2)

Bounding Differential Probability

For all truncated trails covering *r* rounds:

- 1 check if it is coherent with the linear layer,
- 2 decompose it into long trails (static and dynamic),
- **3** bound the probability of all trails following the truncated trail.

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

The Long Trail Argument (2/2)

Bounding Differential Probability

For all truncated trails covering r rounds:

- 1 check if it is coherent with the linear layer,
- 2 decompose it into long trails (static and dynamic),
- **3** bound the probability of all trails following the truncated trail.

 \implies Deduce a bound on the probability of all trails.

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

The Long Trail Argument (2/2)

Bounding Differential Probability

For all truncated trails covering r rounds:

- 1 check if it is coherent with the linear layer,
- 2 decompose it into long trails (static and dynamic),
- **3** bound the probability of all trails following the truncated trail.

 \implies Deduce a bound on the probability of all trails.

Example of a LT bound

After 5 steps, the best trail for four 4-round ARX-Boxes + Feistel linear layer is $< 2^{-128}$.

$5 \ll 12 \ \text{steps}$

Cryptolux Team

SPARX and LAX

11 / 24

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

The Long Trail Strategy (LTS)

Definition (Design Principle)

When using large, weak S-Boxes, it is better to foster Long Trails than diffusion. Thus, the linear layer must be small.

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

The Long Trail Strategy (LTS)

Definition (Design Principle)

When using large, weak S-Boxes, it is better to foster Long Trails than diffusion. Thus, the linear layer must be small.

Wide Trail Strategy	Long Trail Strategy

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

The Long Trail Strategy (LTS)

Definition (Design Principle)

When using large, weak S-Boxes, it is better to foster Long Trails than diffusion. Thus, the linear layer must be small.

Wide Trail Strategy	Long Trail Strategy
S-Box Small, cheap.	S-Box Large, expensive.
Lin. Layer Expensive, complex.	Lin. Layer Cheap, simple.

The	Long-	Trail	Strategy
000	00000	00	

The LAX Approach

Conclusion 0

Plan

1 The Long-Trail Strategy

2 The SPARX Family of LW-BC

- High Level View
- Security Analysis

Implementation

- Methodology
- Results

3 The LAX Approach

4 Conclusion

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

High Level View

SPARX family of block ciphers

- Designed using a long trail strategy.
- SPARX-n/k: *n*-bit block, *k*-bit key ($k \ge 128$).
- Only need 16-bit operations: *« i*, ⊕, ⊞.

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

High Level View

SPARX family of block ciphers

- Designed using a long trail strategy.
- SPARX-n/k: *n*-bit block, *k*-bit key ($k \ge 128$).
- Only need 16-bit operations: *« i*, ⊕, ⊞.

n/k	64/128	128/128	128 /256
# Rounds/Step	3	4	4
# Steps	8	8	10
Best Attack (# rounds)	15/24	22/32	24/40

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

Notations (reminder)

The Long-Trail	Strategy	The
00000000000		000

The LAX Approach

Conclusion 0

High level view

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

SPARX-64/128

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

SPARX-128/128 and SPARX-128/256

Step Function.

 \mathcal{L}' .

SPARX and LAX

17 / 24

The	Long-Trail	Strategy
000	0000000	

The LAX Approach

Conclusion 0

Security

Long Trail Argument

 $P[\text{any diff. trail covering at least 5 steps}] < 2^{-n}$

The	Long-Trail	Strategy
000	0000000	

The LAX Approach

Conclusion 0

Security

Long Trail Argument

 $P[\text{any diff. trail covering at least 5 steps}] < 2^{-n}$

Integral Attacks

- Todo's division property: 4-5 steps for *n* =64-128,
- properties of modular addition: +1 round,
- best distinguishers cover 13-21 rounds for *n* =64-128.

The	Long-Trail	Strategy
000	0000000	

The LAX Approach

Conclusion 0

Security

Long Trail Argument

 $P[\text{any diff. trail covering at least 5 steps}] < 2^{-n}$

Integral Attacks

- Todo's division property: 4-5 steps for n = 64-128,
- properties of modular addition: +1 round,
- best distinguishers cover 13-21 rounds for *n* =64-128.

n/k	64/128	128 /128	128/256
rounds attacked/total	15/24	22/32	24/40
security margin	38 %	31 %	40 %

Cryptolux Team

SPARX and LAX

18 / 24

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

Benchmarking

https://www.cryptolux.org/index.php/FELICS

- Fair Evaluation of Lightweight Cryptographic Systems
- 8-bit ATMEL AVR ; 16-bit TI MSP ; 32-bit ARM Cortex-M3
- Usage scenarios (e.g. CBC encryption of 128 bytes)
- Extracts RAM usage, ROM usage, # CPU cycles.

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

Benchmarking

https://www.cryptolux.org/index.php/FELICS

- Fair Evaluation of Lightweight Cryptographic Systems
- 8-bit ATMEL AVR ; 16-bit TI MSP ; 32-bit ARM Cortex-M3
- Usage scenarios (e.g. CBC encryption of 128 bytes)
- Extracts RAM usage, ROM usage, # CPU cycles.
- Figure Of Merit aggregates: all metrics accross all platforms for the best implementations of one algorithm.

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

Efficiency of the SPARX Ciphers

Dank	Cipher	Block	Key	Scenario 1	Security
Ndiik		size	size	FOM	margin
1	Speck	64	128	5.0	27 %
2	Chaskey-LTS	128	128	5.0	42 %
3	Simon	64	128	6.9	32 %
4	RECTANGLE	64	128	7.8	28 %
5	LEA	128	128	8.0	33 %
6	Sparx	<mark>6</mark> 4	128	8.6	38 %
7	Sparx	128	128	12.9	31 %
8	HIGHT	64	128	14.1	19 %
9	AES	128	128	15.3	30 %
10	Fantomas	128	128	17.2	?? %

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

Efficiency of the SPARX Ciphers

Pank	Ciphor	Block	Key	Scenario 1	Security
Nalik		size	size	FOM	margin
_	Speck	64	128	5.0	27 %
_	Chaskey-LTS	128	128	5.0	42 %
_	Simon	64	128	6.9	32 %
1	RECTANGLE	64	128	7.8	28 %
_	LEA	128	128	8.0	33 %
2	Sparx	<mark>6</mark> 4	128	8.6	38 %
3	Sparx	128	128	12.9	31 %
_	HIGHT	64	128	14.1	19 %
4	AES	128	128	15.3	30 %
5	Fantomas	128	128	17.2	?? %

Gray: designers did not provide differential/linear bounds.

Cryptolux Team

SPARX and LAX

The	Long-Trail	Strategy
000	0000000	

The LAX Approach

Conclusion O

Plan

1 The Long-Trail Strategy

2 The SPARX Family of LW-BC

- Methodology
- Results

3 The LAX Approach

4 Conclusion

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

An Alternative Strategy for Provable ARX

The Wallén Challenge

[...] design a simple and efficient cipher that uses only addition modulo 2^n and F_2 -affine functions, and that is provably resistant against basic DC and LC. —Johan Wallén [Master Thesis, 2003]

DP = differential probability; LC = linear correlation

SPARX and LAX

The SPARX Family of LW-BC

The LAX Approach

Conclusion 0

The LAX Construction

 $(y_{\mathrm{L}}, y_{\mathrm{R}}) = (Lx_{\mathrm{R}}, L(x_{\mathrm{L}} \boxplus x_{\mathrm{R}}))$

LAX-2n

- 2n-bit block, $n \in \{8, 16\}$
- L is $n \times n$ binary matrix that
 - 1 is invertible,
 - 2 has branch number d > 2,
- $[I \ L]$ is a [2n, n, d] lin. code:
 - LAX-16: [16, 8, 5]
 LAX-32: [32, 16, 8]

Linear transform, Addition, XOR \implies LAX

The	Long-Trail	Strategy
0000	0000000	

The LAX Approach

Conclusion 0

Differential Bound on 3 Rounds

Theorem

The maximum DP of any trail on 3 rounds of LAX-2n is $2^{-(d-2)}$, where d is the branch number of L.

2 <i>п</i>	# Rounds		1 2	3	4	5	6	7	8	9	10	11	12
16	$p_{ m best}$	+) -2	4	-7	-8	-11	-13	-16	-18	-20	-23	-25
	p bound			-3			<u> </u>			-9			-12
32	$p_{ m best}$	+) -2	6	-9	-11	-16	-18	-20	-24	-28	-29	-34
	p bound			<u> </u>			-12			-18			-24

The	Long-Trail	Strategy
0000	0000000	

The LAX Approach

Conclusion 0

Differential Bound on 3 Rounds

Theorem

The maximum DP of any trail on 3 rounds of LAX-2n is $2^{-(d-2)}$, where d is the branch number of L.

2 <i>п</i>	# Rounds		1 2	3	4	5	6	7	8	9	10	11	12
16	$p_{ m best}$	+) -2	4	-7	-8	-11	-13	-16	-18	-20	-23	-25
	p bound			-3			<u> </u>			-9			-12
32	$p_{ m best}$	+) -2	6	-9	-11	-16	-18	-20	-24	-28	-29	-34
	p bound			<u> </u>			-12			-18			-24

Open Problem

The bound does not hold for the linear case.

Cryptolux Team

SPARX and LAX

23 / 24

The	Long-Trail	Strategy
000	0000000	

The LAX Approach

Conclusion 0

Plan

The Long-Trail Strategy

2 The SPARX Family of LW-BC

- Methodology
- Results

The SPARX Family of LW-BC

The LAX Approach

Conclusion •

Conclusion

source: Wiki Commons

The SPARX Family of LW-BC

The LAX Approach

Conclusion

Conclusion

source: Wiki Commons

Long-Trail Strategy

- Dual of the Wide-trail strategy
- Differential and linear bounds
- https://www.cryptolux.org/ index.php/SPARX

Cryptolux Team

The SPARX Family of LW-BC

The LAX Approach

Conclusion

Conclusion

source: Wiki Commons

Long-Trail Strategy

- Dual of the Wide-trail strategy
- Differential and linear bounds
- https://www.cryptolux.org/ index.php/SPARX

LAX

- Branching number \implies diff. bound
- Open problem: LAX for linear bound?

The SPARX Family of LW-BC

The LAX Approach

Conclusion

Conclusion

source: Wiki Commons

Long-Trail Strategy

- Dual of the Wide-trail strategy
- Differential and linear bounds
- https://www.cryptolux.org/ index.php/SPARX

LAX

- Branching number \implies diff. bound
- Open problem: LAX for linear bound?

Thank you!

Cryptolux Team

SPARX and LAX