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Format Preserving Encryption

Example:

Existing database with millions of US social security
numbers

7 * Represent SSN as 30-bit numbers

~ rd
—~ @- * Pad with zeros
\v * Encrypt using a standard block cipher
v (e.g. AES)

Encrypted numbers have a significantly different format!



Format Preserving Encryption

Format Preserve Encryption schemes:

Encryption schemes in which ciphertexts have the
same format as plaintexts.

Alan Johnson
Brianna Smith

Catherine Jones

Douglas Wilson

845-10-3814
143-66-9875
333-79-0123

593-58-2057

=

?7??

Encrypted SSN

942-54-3210
771-98-1094
574-30-9214

889-01-4884
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* Proof Outline
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General Approach

1. Find a cipheron alargerset T
2. Transform it to a cipher on a smaller set S

Example: Social Security Numbers

* Let T be the set of 30-bit strings (10° < 239)
* There are many block ciphers to encipher 30-bit

strings | |
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T £D FoOR

OOOOOOO



Cycle Walking

1. Find acipheronalargersetT
2. Transform it to a cipher on a smaller set S



Cycle Walking

1. Find acipheronalargersetT
it to a cipher on a smaller set S

Algorithm CW_(x):
do

X «Tt(X)
while(x ¢ S)
return X




Cycle Walking - Example

Algorithm CW_ (x):
T ={0,...,.9} do
S =1{0,2,4,6,8} X<«Tt(X)
while(X€S)
return X

Consider the cycle structure:

(9 4651 O) (3 27 8) <— Permutationon |
(94 6510) (3278)

(4- 6 O) (2 8) <—— Permutationon S
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Running Time of Cycle Walking

Formally analyzed by Black and Rogaway [CT-RSA 2002]

* Small expected running time — O(1)
(assuming |S| is a constant fraction of |T|)

* Worst case running time of O(|T|)

* Different run times can leak timing information

* If the adversary has access to ciphertexts, # cycle-
walking steps then not damaging

[Bellare, Ristenpart, Rogaway, Stegers ‘09]
* In general?



Talk Outline

* Background and Previous Work

* Our Algorithm — an alternative to cycle walking
* Proof Outline
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First Approach

T = {0,..,9)
S ={0,2,4,6,8)

Consider the cycle structure:

(4- 13570296 8) <«<—— Permutationon T

|dea: Cut-off Cycle Walking Early



Reverse Cycle Walking

T = {0,..,9)
S ={0,2,4,6,8)

Consider the cycle structure:

(413570296 8)
(443570296 8)

(684)(02)

Our Algorithm: Walk backward



Reverse Cycle Walking

T = {0,..,9)
S ={0,2,4,6,8)

Consider the cycle structure:

(413570296 8)

(443570296 8)

(6 8% (02) = (41 (6)(6)O2)

Our Algorithm: Walk backward + only consider 2-cycles



Another Example

T = {0,..,9)
S ={0,2,4,6,8)

Consider the cycle structure:

(9 4651 0) (3 27 8) <——— Permutationon T

(94 6510) (3278)

(4- 6) (0) (2) (8) <«<——— Permutation on S



Reverse Cycle Walking

Algorithm RCW, g(x):

Ve—Ti(X); ZeT1(X)
if yeS and z¢S and n(y)&S:
b« B(X)
if b = 1 return y else return x
else if y¢S and zeS and mi(z)«S:
D «— B(Z)
if b = 1 return z else return X
else
return x
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Running Time of RCW

* 1 Step of RCW takes O(1) time
* But, even if is random, RCW__is NOT random

How many rounds of RCW are needed before the
resulting permutation on S is close to random?

This is a Markov chain!

Answer: O(log |T|)
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Advantages of RCW

* Lower worst case running time - O(n) to O(logn)
* No leaked timing information

e Can trade-off security and running time

* Increases the level of security

Reverse 2-Cycle
NOT fully secure Walking Fully secure

cipher on larger
setT

cipher on
smaller set S!

m—

under certain circumstances. ..



Talk Outline

* Background and Previous Work
* Reverse Cycle Walking
* Proof Outline — analyzing the mixing time of RCW



Mixing Time

Definition: The is
| PSm|] = max %2 ) |P'(xy) - n(y)].
xel) ye()
Definition: Given g, the is

t(e) = min {t: [|Pt || <&, yt >t
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Bounding the Mixing Time of RCW

1. Show that RCW yields a “matching exchange
process”

2. Defined and analyzed by Czumaj and Kutylowski
[RSA '00]
3. Use same techniques but. ..

* Give explicit constants for RCW algorithm
* Reprove several key lemmas



Matching Exchange Process

Repeat:
1. Choose a number k according to some distribution.
2. Pick a matching M of size k uniformly at random
3. For each pair in the matching,
* transpose the two points with prob. %
* otherwise, do nothing



Matching Exchange Process

Repeat:
1. Choose a number k according to some distribution.
2. Pick a matching M of size k uniformly at random
3. For each pair in the matching,
* transpose the two points with prob. %
* otherwise, do nothing

4 )
Theorem [Czumaj, Kutylowski]: If E(x) is ®(n) then a

matching exchange process mixes in time O(log n).
NS A/
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Path Coupling Approach

[Bubley,Dyer,Greenhill’ 97-8]

* Consider 2 configurations that differ by a single
transposition (u,v)

* If the first matching contains the pair (u,v) then we
can couple the processes after a single step

* But, this only happens with probably O(1/n)

—> O(nlogn)
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Analyzing a Matching Exchange

High-level Approach:

* Look at what happens over O(log(n)) steps.
Delayed Path Coupling [Czumaj, et al.]

* Use a non-Markovian coupling

* Let M; ... M, be the matchings for process X and
Ny ... N, be the matchings for process Y.

* Choose M; ... M, randomly — according to the alg.
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Key Lemmas

1. Show that after ®(log n) steps with high
probability, the number of good pairs is ©(n)

2. Show that with high probability, one of the next
®(log n) matchings contains a good pair
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Future Directions

* Improve the constants further
* Remove the bit flip

e Design an alternative algorithm

Expected O(1) running time of cycle walking is very
attractive



Questions?



