
Reverse	Cycle	Walking	
and	its	Applications

Sarah	Miracle	and	Scott	Yilek
University	of	St.	Thomas

Format	Preserving	Encryption

Existing	database	with	millions	of	US	social	security	
numbers		
• 9	digit	numbers
• First	3	digits	can’t	be	666
• And	more	.	.	.	

Example:

Format	Preserving	Encryption

Existing	database	with	millions	of	US	social	security	
numbers		
• 9	digit	numbers
• First	3	digits	can’t	be	666
• And	more	.	.	.	

Example:

How	to	add	encryption?

Format	Preserving	Encryption

Existing	database	with	millions	of	US	social	security	
numbers		

Example:

How	to	add	encryption?

Format	Preserving	Encryption

Existing	database	with	millions	of	US	social	security	
numbers		

Example:

• Represent	SSN	as	30-bit	numbers
• Pad	with	zeros
• Encrypt	using	a	standard	block	cipher
(e.g.	AES)

How	to	add	encryption?

Format	Preserving	Encryption

Existing	database	with	millions	of	US	social	security	
numbers		

Example:

• Represent	SSN	as	30-bit	numbers
• Pad	with	zeros
• Encrypt	using	a	standard	block	cipher
(e.g.	AES)

How	to	add	encryption?

Encrypted	numbers	have	a	significantly	different	format!

Format	Preserving	Encryption
Format	Preserve	Encryption	schemes:
Encryption	schemes	in	which	ciphertexts have	the	
same	format	as	plaintexts.

Name SSN

Alan	Johnson 845-10-3814

Brianna Smith 143-66-9875

Catherine	Jones 333-79-0123

Douglas	Wilson 593-58-2057

Encrypted SSN

942-54-3210

771-98-1094

574-30-9214

889-01-4884

???

Talk	Outline

• Background	and	Previous	Work
• Our	Algorithm
• Proof	Outline

Background

Background

• Small-domain	block	ciphers	for	bitstrings or	integers	up	to	N

Background

• Small-domain	block	ciphers	for	bitstrings or	integers	up	to	N
[Hoang,	Morris,	Rogaway ’12],	[Ristenpart,	Yilek ‘13],
[Morris,Rogaway ’14]

Background

• Small-domain	block	ciphers	for	bitstrings or	integers	up	to	N
[Hoang,	Morris,	Rogaway ’12],	[Ristenpart,	Yilek ‘13],
[Morris,Rogaway ’14]

• If	the	target	set	S has	an	efficient	way	to	rank/unrank then	
you	can	use	a	cipher	on	{0,….,	|S|	- 1}		

Background

• Small-domain	block	ciphers	for	bitstrings or	integers	up	to	N
[Hoang,	Morris,	Rogaway ’12],	[Ristenpart,	Yilek ‘13],
[Morris,Rogaway ’14]

• If	the	target	set	S has	an	efficient	way	to	rank/unrank then	
you	can	use	a	cipher	on	{0,….,	|S|	- 1}		

We’ll	only	assume	we	can	test	membership	in	our	
target	domain	set	S

General	Approach

1. Find	a	cipher	on	a	larger	set	T
2. Transform	it	to	a	cipher	on	a	smaller	set	S

• Let	T be	the	set	of	30-bit	strings	(109 <	230)
• There	are	many	block	ciphers	to	encipher	30-bit	
strings

Example:	Social	Security	Numbers

Cycle	Walking

1. Find	a	cipher	on	a	larger	set	T
2. Transform it	to	a	cipher	on	a	smaller	set	S

Cycle	Walking

1. Find	a	cipher	on	a	larger	set	T
2. Transform it	to	a	cipher	on	a	smaller	set	S

Algorithm CWπ(x):
do

x π(x)
while(x S)
return x

∉

Cycle	Walking	- Example

T	=	{0,...,9}
S	=	{0,2,4,6,8}

Algorithm CWπ(x):
do

x π(x)
while(x S)
return x

∉

(9	4 6 5	1	0)	(3	2 7	8)

(9 4	6 5	1	0)	(3 2 7 8)

(4	6	0)	(2	8)

Permutation	on	T

Permutation	on	S

Consider	the	cycle	structure:

Running	Time	of	Cycle	Walking
Formally	analyzed	by	Black	and	Rogaway [CT-RSA	2002]

Running	Time	of	Cycle	Walking

• Small	expected	running	time	– O(1)
(assuming	|S| is	a	constant	fraction	of	|T|)

Formally	analyzed	by	Black	and	Rogaway [CT-RSA	2002]

Running	Time	of	Cycle	Walking

• Small	expected	running	time	– O(1)
(assuming	|S| is	a	constant	fraction	of	|T|)

• Worst	case	running	time	of	Θ(|T|)

Formally	analyzed	by	Black	and	Rogaway [CT-RSA	2002]

Running	Time	of	Cycle	Walking

• Small	expected	running	time	– O(1)
(assuming	|S| is	a	constant	fraction	of	|T|)

• Worst	case	running	time	of	Θ(|T|)
• Different	run	times	can	leak	timing	information
• If	the	adversary	has	access	to	ciphertexts,	#	cycle-
walking	steps	then	not	damaging
[Bellare,	Ristenpart,	Rogaway,	Stegers ‘09]

• In	general?

Formally	analyzed	by	Black	and	Rogaway [CT-RSA	2002]

Running	Time	of	Cycle	Walking

• Small	expected	running	time	– O(1)
(assuming	|S| is	a	constant	fraction	of	|T|)

• Worst	case	running	time	of	Θ(|T|)
• Different	run	times	can	leak	timing	information
• If	the	adversary	has	access	to	ciphertexts,	#	cycle-
walking	steps	then	not	damaging
[Bellare,	Ristenpart,	Rogaway,	Stegers ‘09]

• In	general?

Formally	analyzed	by	Black	and	Rogaway [CT-RSA	2002]

Can	we	do	better?

Talk	Outline

• Background	and	Previous	Work
• Our	Algorithm	– an	alternative	to	cycle	walking
• Proof	Outline

First	Approach

T	=	{0,...,9}
S	=	{0,2,4,6,8}

(4 1	3	5	7	0	2	9 6	8) Permutation	on	T

Consider	the	cycle	structure:

First	Approach

T	=	{0,...,9}
S	=	{0,2,4,6,8}

(4 1	3	5	7	0	2	9 6	8) Permutation	on	T

Consider	the	cycle	structure:

Idea:	Cut-off	Cycle	Walking	Early

Reverse	Cycle	Walking

T	=	{0,...,9}
S	=	{0,2,4,6,8}

Consider	the	cycle	structure:

Our	Algorithm:	Walk	backward

(4 1	3	5	7	0	2	9 6	8)

(4 1	3	5	7 0	2	9 6	8)

(6	8	4)	(0	2)

Reverse	Cycle	Walking

T	=	{0,...,9}
S	=	{0,2,4,6,8}

Consider	the	cycle	structure:

Our	Algorithm:	Walk	backward

(4 1	3	5	7	0	2	9 6	8)

(4 1	3	5	7 0	2	9 6	8)

(6	8	4)	(0	2)

+	only	consider	2-cycles

(4)	(8)	(6)	(0	2)

Another	Example

T	=	{0,...,9}
S	=	{0,2,4,6,8}

(9	4	6	5	1	0)	(3	2 7	8)

(9 4	6 5	1	0)	(3 2 7 8)

(4	6)	(0)	(2)	(8)

Permutation	on	T

Permutation	on	S

Consider	the	cycle	structure:

Algorithm RCWπ,B(x):

y π(x); z π-1(x)
if y S and z S and π(y) S:

b B(x)
if b = 1 return y else return x

else if y S and z S and π-1(z) S:
b B(z)
if b = 1 return z else return x

else
return x

∉

Reverse	Cycle	Walking

∉

∉∉ ∈

∈

Running	Time	of	RCW

Running	Time	of	RCW

• 1	Step	of	RCW	takes	O(1) time

Running	Time	of	RCW

• 1	Step	of	RCW	takes	O(1) time
• But,	even	if	π is	random,	RCWπ is	NOT	random

Running	Time	of	RCW

• 1	Step	of	RCW	takes	O(1) time
• But,	even	if	π is	random,	RCWπ is	NOT	random

How	many	rounds	of	RCW	are	needed	before	the	
resulting	permutation	on	S is	close	to	random?

Running	Time	of	RCW

• 1	Step	of	RCW	takes	O(1) time
• But,	even	if	π is	random,	RCWπ is	NOT	random

How	many	rounds	of	RCW	are	needed	before	the	
resulting	permutation	on	S is	close	to	random?

This	is	a	Markov	chain!

Running	Time	of	RCW

• 1	Step	of	RCW	takes	O(1) time
• But,	even	if	π is	random,	RCWπ is	NOT	random

How	many	rounds	of	RCW	are	needed	before	the	
resulting	permutation	on	S is	close	to	random?

This	is	a	Markov	chain!

Answer:	O(log	|T|)

Advantages	of	RCW

Advantages	of	RCW

• Lower	worst	case	running	time	- O(n)	to	O(log	n)

Advantages	of	RCW

• Lower	worst	case	running	time	- O(n)	to	O(log	n)
• No	leaked	timing	information

Advantages	of	RCW

• Lower	worst	case	running	time	- O(n)	to	O(log	n)
• No	leaked	timing	information
• Can	trade-off	security	and	running	time

Advantages	of	RCW

• Lower	worst	case	running	time	- O(n)	to	O(log	n)
• No	leaked	timing	information
• Can	trade-off	security	and	running	time
• Increases	the	level	of	security

Advantages	of	RCW

• Lower	worst	case	running	time	- O(n)	to	O(log	n)
• No	leaked	timing	information
• Can	trade-off	security	and	running	time
• Increases	the	level	of	security

NOT	fully	secure	
cipher	on	larger	

set	T

Fully	secure	
cipher	on	

smaller	set	S!

Reverse	2-Cycle	
Walking

under	certain	circumstances	.	.	.	

Talk	Outline

• Background	and	Previous	Work
• Reverse	Cycle	Walking
• Proof	Outline	– analyzing	the	mixing	time	of	RCW

Definition:		The	total	variation	distance	is	

||	Pt,	π	||	=		max ½ ∑			|Pt(x,y)	– π(y)|.

Definition: Given	ε,	the	mixing	time	is

τ(ε)	=	min	{t:	||Pt’,π|| < ε,							t’≥	t}.A

Mixing	Time

x Ω∈ y Ω	∈

Bounding	the	Mixing	Time	of	RCW

Bounding	the	Mixing	Time	of	RCW

1. Show	that	RCW	yields	a	“matching	exchange	
process”

Bounding	the	Mixing	Time	of	RCW

1. Show	that	RCW	yields	a	“matching	exchange	
process”

2. Defined	and	analyzed	by	Czumaj and	Kutylowski
[RSA	’00]

Bounding	the	Mixing	Time	of	RCW

1. Show	that	RCW	yields	a	“matching	exchange	
process”

2. Defined	and	analyzed	by	Czumaj and	Kutylowski
[RSA	’00]

3. Use	same	techniques	but	.	.	.
• Give	explicit	constants	for	RCW	algorithm
• Reprove	several	key	lemmas	

Matching	Exchange	Process

Matching	Exchange:
Repeat:
1. Choose	a	number	κ according	to	some	distribution.
2. Pick	a	matching	M	of	size	κ uniformly	at	random
3. For	each	pair	in	the	matching,	
• transpose	the	two	points	with	prob.	½
• otherwise,	do	nothing

Matching	Exchange	Process

Matching	Exchange:
Repeat:
1. Choose	a	number	κ according	to	some	distribution.
2. Pick	a	matching	M	of	size	κ uniformly	at	random
3. For	each	pair	in	the	matching,	
• transpose	the	two	points	with	prob.	½
• otherwise,	do	nothing

Theorem [Czumaj,	Kutylowski]:	If	E(κ) is	Θ(n) then	a	
matching	exchange	process	mixes	in	time	O(log	n).

Path	Coupling	Approach
[Bubley,Dyer,Greenhill’97-8]

Path	Coupling	Approach

• Consider	2	configurations	that	differ	by	a	single	
transposition	(u,v)

[Bubley,Dyer,Greenhill’97-8]

Path	Coupling	Approach

• Consider	2	configurations	that	differ	by	a	single	
transposition	(u,v)
• If	the	first	matching	contains	the	pair	(u,v)	then	we	
can	couple	the	processes	after	a	single	step

[Bubley,Dyer,Greenhill’97-8]

Path	Coupling	Approach

• Consider	2	configurations	that	differ	by	a	single	
transposition	(u,v)
• If	the	first	matching	contains	the	pair	(u,v)	then	we	
can	couple	the	processes	after	a	single	step
• But,	this	only	happens	with	probably	O(1/n)

[Bubley,Dyer,Greenhill’97-8]

Path	Coupling	Approach

• Consider	2	configurations	that	differ	by	a	single	
transposition	(u,v)
• If	the	first	matching	contains	the	pair	(u,v)	then	we	
can	couple	the	processes	after	a	single	step
• But,	this	only	happens	with	probably	O(1/n)

⇒ O(n	log	n)

[Bubley,Dyer,Greenhill’97-8]

Analyzing	a	Matching	Exchange

High-level	Approach:

Analyzing	a	Matching	Exchange

High-level	Approach:
• Look	at	what	happens	over	O(log(n))	steps.		

Delayed	Path	Coupling	[Czumaj,	et	al.]

Analyzing	a	Matching	Exchange

High-level	Approach:
• Look	at	what	happens	over	O(log(n))	steps.		

Delayed	Path	Coupling	[Czumaj,	et	al.]

• Use	a	non-Markovian	coupling

Analyzing	a	Matching	Exchange

High-level	Approach:
• Look	at	what	happens	over	O(log(n))	steps.		

Delayed	Path	Coupling	[Czumaj,	et	al.]

• Use	a	non-Markovian coupling
• Let	M1 .	.	.	Mt be	the	matchings for	process	X and	
N1 .	.	.	Nt be	the	matchings	for	process	Y.

Analyzing	a	Matching	Exchange

High-level	Approach:
• Look	at	what	happens	over	O(log(n))	steps.		

Delayed	Path	Coupling	[Czumaj,	et	al.]

• Use	a	non-Markovian coupling
• Let	M1 .	.	.	Mt be	the	matchings for	process	X and	
N1 .	.	.	Nt be	the	matchings for	process	Y.
• Choose	M1 .	.	.	Mt randomly	– according	to	the	alg.

Analyzing	a	Matching	Exchange

Key	Idea

Key	Idea
• Assume	X0 and	Y0 differ	by	a	(u,v)	transposition

Key	Idea
• Assume	X0 and	Y0 differ	by	a	(u,v)	transposition
• Assume	M1 contains	(u,z)	and	(v,w)
• If	you	let	N1 =	M1 then	X1 and	Y1 differ	by	a	(z,w)	trans.
• If	you	let	N1 =	M1 – (u,z)	– (v,w)	+	(u,w)	+	(v,z)	then	X1 and	
Y1 differ	by	a	(u,v)	trans.

Key	Idea
• Assume	X0 and	Y0 differ	by	a	(u,v)	transposition
• Assume	M1 contains	(u,z)	and	(v,w)
• If	you	let	N1 =	M1 then	X1 and	Y1 differ	by	a	(z,w)	trans.
• If	you	let	N1 =	M1 – (u,z)	– (v,w)	+	(u,w)	+	(v,z)	then	X1 and	
Y1 differ	by	a	(u,v)	trans.

• If	M2 contains	(u,v)	OR	(z,w)	then	can	choose	N2 so	
that	Δ(X1,	Y1)	=	0 .

Key	Idea
• Assume	X0 and	Y0 differ	by	a	(u,v)	transposition
• Assume	M1 contains	(u,z)	and	(v,w)
• If	you	let	N1 =	M1 then	X1 and	Y1 differ	by	a	(z,w)	trans.
• If	you	let	N1 =	M1 – (u,z)	– (v,w)	+	(u,w)	+	(v,z)	then	X1 and	
Y1 differ	by	a	(u,v)	trans.

• If	M2 contains	(u,v)	OR	(z,w)	then	can	choose	N2 so	
that	Δ(X1,	Y1)	=	0 .

Call	(u,v)	and	(z,w)	“good	pairs”.

Key	Lemmas

Key	Lemmas

1. Show	that	after	Θ(log	n)	steps	with	high	
probability,	the	number	of	good	pairs	is	Θ(n)

Key	Lemmas

1. Show	that	after	Θ(log	n)	steps	with	high	
probability,	the	number	of	good	pairs	is	Θ(n)

2. Show	that	with	high	probability,	one	of	the	next	
Θ(log	n)	matchings contains	a	good	pair

Future	Directions

Future	Directions

• Improve	the	constants	further

Future	Directions

• Improve	the	constants	further
• Remove	the	bit	flip

Future	Directions

• Improve	the	constants	further
• Remove	the	bit	flip
• Design	an	alternative	algorithm

Expected	O(1)	running	time	of	cycle	walking	is	very	
attractive

Questions?

