
Balloon Hashing 
A Memory-Hard Function  
with Provable Protection  
Against Sequential Attacks

Dan Boneh, Stanford
Henry Corrigan-Gibbs, Stanford  
Stuart Schechter, Microsoft Research

*

Balloon Hashing

A new password hashing function that:

1. Is proven memory-hard (in the sequential setting)

2. Uses a password-independent 
data access pattern

3. Matches the performance of the best 
heuristically secure memory-hard functions

The Attacker’s Job
User Salt H(passwd, salt)
alice 0x65ff0162 0x526642d8

bob 0x37ceb328 0x5a325ad2

carol 0xec967ec1 0xf4441a71

dave 0xfb791a9a 0x1dbd71f3

The Attacker’s Job
User Salt H(passwd, salt)
alice 0x65ff0162 0x526642d8

bob 0x37ceb328 0x5a325ad2

carol 0xec967ec1 0xf4441a71

dave 0xfb791a9a 0x1dbd71f3

For each row,
attacker wants to make

230 guesses

Overall Goal
A good password hashing function makes the attacker’s
job as difficult as possible.

Overall Goal
A good password hashing function makes the attacker’s
job as difficult as possible.

Overall Goal
A good password hashing function makes the attacker’s
job as difficult as possible.

If the authentication server can compute…
X hashes per $ of energy

then an attacker with custom hardware should
only be able to compute…

(1+ε)X hashes per $ of energy

Overall Goal
A good password hashing function makes the attacker’s
job as difficult as possible.

If the authentication server can compute…
X hashes per $ of energy

then an attacker with custom hardware should
only be able to compute…

(1+ε)X hashes per $ of energy
By this metric,

conventional hash functions 
(e.g., SHA-256) are far from

optimal!

1

10

100

1,000

Server Attacker

SH
A-

25
6

Ha
sh

es
(b

illi
on

s/
$

of
 p

ow
er

)
MH/s

Intel Westmere  
(Server)

Antminer S7  
(Attacker)

SH
A-

25
6

H
as

he
s 

(b
illi

on
s/

$
of

 e
ne

rg
y)

1

10

100

1,000

Server Attacker

SH
A-

25
6

Ha
sh

es
(b

illi
on

s/
$

of
 p

ow
er

)
MH/s

?
Intel Westmere  

(Server)
Antminer S7  

(Attacker)

SH
A-

25
6

H
as

he
s 

(b
illi

on
s/

$
of

 e
ne

rg
y)

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

Server Attacker

SH
A-

25
6

 H
as

he
s

(b
illi

on
s/

$
of

 p
ow

er
)

H

Intel Westmere  
(Server)

Antminer S7  
(Attacker)

SH
A-

25
6

H
as

he
s 

(b
illi

on
s/

$
of

 e
ne

rg
y)

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

Server Attacker

SH
A-

25
6

 H
as

he
s

(b
illi

on
s/

$
of

 p
ow

er
)

H
$512 on Amazon

Intel Westmere  
(Server)

Antminer S7  
(Attacker)

SH
A-

25
6

H
as

he
s 

(b
illi

on
s/

$
of

 e
ne

rg
y)

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

Server Attacker

SH
A-

25
6

 H
as

he
s

(b
illi

on
s/

$
of

 p
ow

er
)

H

Intel Westmere  
(Server)

Antminer S7  
(Attacker)

SH
A-

25
6

H
as

he
s 

(b
illi

on
s/

$
of

 e
ne

rg
y)

Intel Ivy Bridge-E Core i7-4960X
http://kylebennett.com/files/hfpics/IVB-E_%28LCC%29_Die_Wafer_Shot-7837.jpg

http://kylebennett.com/files/hfpics/IVB-E_%28LCC%29_Die_Wafer_Shot-7837.jpg

Intel Ivy Bridge-E Core i7-4960X
http://kylebennett.com/files/hfpics/IVB-E_%28LCC%29_Die_Wafer_Shot-7837.jpg

Core

Core

Core

Core

Core

Core

http://kylebennett.com/files/hfpics/IVB-E_%28LCC%29_Die_Wafer_Shot-7837.jpg

Intel Ivy Bridge-E Core i7-4960X
http://kylebennett.com/files/hfpics/IVB-E_%28LCC%29_Die_Wafer_Shot-7837.jpg

Memory Controller

Core

Core

Core

Core

Core

Core

http://kylebennett.com/files/hfpics/IVB-E_%28LCC%29_Die_Wafer_Shot-7837.jpg

Intel Ivy Bridge-E Core i7-4960X
http://kylebennett.com/files/hfpics/IVB-E_%28LCC%29_Die_Wafer_Shot-7837.jpg

Memory Controller

Core

Core

Core

Core

Core

Core

I/O, Queue, etc.

http://kylebennett.com/files/hfpics/IVB-E_%28LCC%29_Die_Wafer_Shot-7837.jpg

Intel Ivy Bridge-E Core i7-4960X
http://kylebennett.com/files/hfpics/IVB-E_%28LCC%29_Die_Wafer_Shot-7837.jpg

Memory Controller

Core

Core

Core

Core

Core

Core

I/O, Queue, etc.

L3 Cache

http://kylebennett.com/files/hfpics/IVB-E_%28LCC%29_Die_Wafer_Shot-7837.jpg

Intel Ivy Bridge-E Core i7-4960X
http://kylebennett.com/files/hfpics/IVB-E_%28LCC%29_Die_Wafer_Shot-7837.jpg

http://kylebennett.com/files/hfpics/IVB-E_%28LCC%29_Die_Wafer_Shot-7837.jpg

Intel Ivy Bridge-E Core i7-4960X
http://kylebennett.com/files/hfpics/IVB-E_%28LCC%29_Die_Wafer_Shot-7837.jpg

http://kylebennett.com/files/hfpics/IVB-E_(LCC)_Die_Wafer_Shot-7837.jpg

Intel Ivy Bridge-E Core i7-4960X
http://kylebennett.com/files/hfpics/IVB-E_%28LCC%29_Die_Wafer_Shot-7837.jpg

http://kylebennett.com/files/hfpics/IVB-E_(LCC)_Die_Wafer_Shot-7837.jpg

Cost ≈ Area

Cost ≈ Area

1000000x
efficiency gain!

“Avalon”
http://zeptobars.ru/en/read/avalon-bitcoin-mining-unit-rig

http://zeptobars.ru/en/read/avalon-bitcoin-mining-unit-rig

Memory-Hardness

Memory-Hardness
 
Memory-hard functions use a large amount of working
space during their computation  
→ Attacker must keep caches on chip  
→ Decreases the advantage of special-purpose HW 
[Reinhold 1999], [Dwork, Goldberg, Naor 2003], [Abadi et al. 2005], [Percival 2009]

Memory-Hardness
 
Memory-hard functions use a large amount of working
space during their computation  
→ Attacker must keep caches on chip  
→ Decreases the advantage of special-purpose HW 
[Reinhold 1999], [Dwork, Goldberg, Naor 2003], [Abadi et al. 2005], [Percival 2009]

Typical technique: 
1. Fill – fill buffer with pseudo-random bytes 
2. Mix – read and write pseudo-random blocks in buffer 
3. Extract – extract function output from buffer contents

Intel Ivy Bridge-E Core i7-4960X
http://kylebennett.com/files/hfpics/IVB-E_%28LCC%29_Die_Wafer_Shot-7837.jpg

http://kylebennett.com/files/hfpics/IVB-E_%28LCC%29_Die_Wafer_Shot-7837.jpg

Intel Ivy Bridge-E Core i7-4960X
http://kylebennett.com/files/hfpics/IVB-E_%28LCC%29_Die_Wafer_Shot-7837.jpg

Without
memory-hardness

http://kylebennett.com/files/hfpics/IVB-E_%28LCC%29_Die_Wafer_Shot-7837.jpg

Intel Ivy Bridge-E Core i7-4960X
http://kylebennett.com/files/hfpics/IVB-E_%28LCC%29_Die_Wafer_Shot-7837.jpg

Without
memory-hardness

With
memory-hardness

http://kylebennett.com/files/hfpics/IVB-E_%28LCC%29_Die_Wafer_Shot-7837.jpg

Plan

I. Background on password hashing
II. Goals
III. The Balloon algorithm
IV. Discussion

Plan

I. Background on password hashing
II. Goals
III. The Balloon algorithm
IV. Discussion

Plan

I. Background on password hashing
II. Goals
III. The Balloon algorithm
IV. Discussion

Goal 1: Memory-Hardness

Memory-hard functions: [Abadi et al. 2005] [Percival 2009]
Random oracles: [Bellare & Rogaway 1993]

Informally, a memory-hard function, with hardness parameter
N, requires space S and time T to compute, where

S · T ∈ Ω(N2)
in the random-oracle model.

Goal 1: Memory-Hardness

Memory-hard functions: [Abadi et al. 2005] [Percival 2009]
Random oracles: [Bellare & Rogaway 1993]

Informally, a memory-hard function, with hardness parameter
N, requires space S and time T to compute, where

S · T ∈ Ω(N2)
in the random-oracle model.

Intuition: any adversary who tries to save space will pay a
large penalty in computation time.

Goal 1: Memory-Hardness

Memory-hard functions: [Abadi et al. 2005] [Percival 2009]
Random oracles: [Bellare & Rogaway 1993]

Goal 2: Side-Channel Resistance

Goal 2: Side-Channel Resistance

• The memory access pattern should not leak
information about the password being hashed  
[Tsunoo et al. 2003] [Bernstein 2005] [Bonneau & Mironov 2006] […]

Goal 2: Side-Channel Resistance

• The memory access pattern should not leak
information about the password being hashed  
[Tsunoo et al. 2003] [Bernstein 2005] [Bonneau & Mironov 2006] […]

Goal 3: Real-World Practical

Goal 2: Side-Channel Resistance

• The memory access pattern should not leak
information about the password being hashed  
[Tsunoo et al. 2003] [Bernstein 2005] [Bonneau & Mironov 2006] […]

Goal 3: Real-World Practical

• The hash should be able to support hundreds of
logins per second while filling L2 cache (or more)

Existing Schemes

Existing Schemes

bcrypt, PBKDF2 [Provos & Mazières 1999], [Kaliski 2000] 
Not memory hard

Existing Schemes

bcrypt, PBKDF2 [Provos & Mazières 1999], [Kaliski 2000] 
Not memory hard

scrypt [Percival 2009] 
Password-dependent memory access pattern

Existing Schemes

bcrypt, PBKDF2 [Provos & Mazières 1999], [Kaliski 2000] 
Not memory hard

scrypt [Percival 2009] 
Password-dependent memory access pattern

Parallel-secure schemes 
May be impractical for realistic parameter sizes

[Alwen & Serbinenko 2015] 
[Alwen, Blocki, Pietrzak 2016]

Existing Schemes

bcrypt, PBKDF2 [Provos & Mazières 1999], [Kaliski 2000] 
Not memory hard

scrypt [Percival 2009] 
Password-dependent memory access pattern

Parallel-secure schemes 
May be impractical for realistic parameter sizes

Argon2i and Catena [Biryukov et al. 2015] [Forler et al. 2015]  
Lack formal security analysis

[Alwen & Serbinenko 2015] 
[Alwen, Blocki, Pietrzak 2016]

Existing Schemes

bcrypt, PBKDF2 [Provos & Mazières 1999], [Kaliski 2000] 
Not memory hard

scrypt [Percival 2009] 
Password-dependent memory access pattern

Parallel-secure schemes 
May be impractical for realistic parameter sizes

Argon2i and Catena [Biryukov et al. 2015] [Forler et al. 2015]  
Lack formal security analysis

[Alwen & Serbinenko 2015] 
[Alwen, Blocki, Pietrzak 2016]

We demonstrate a
practical attack against

Argon2i

Plan

I. Background on password hashing
II. Goals
III. The Balloon algorithm
IV. Discussion

Plan

I. Background on password hashing
II. Goals
III. The Balloon algorithm
IV. Discussion

Balloon Hashing

A password hashing function that:

1. Is proven memory-hard (in the sequential setting)

2. Uses a password-independent 
data access pattern

3. Matches the performance of the best 
heuristically secure memory-hard functions

Balloon Hashing

A password hashing function that:

1. Is proven memory-hard (in the sequential setting)

2. Uses a password-independent 
data access pattern

3. Matches the performance of the best 
heuristically secure memory-hard functions

Balloon(password, salt, N = space_cost, R = num_rounds):
δ ← 3 // A security parameter.
var B1, …, BN // A buffer of N blocks. 

 
// Step 1: Fill Buffer
B1 ← Hash(password, salt)
for i = 2, …, N:

Bi ← Hash(Bi-1)
 

// Step 2: Mix Buffer
for r = 1, …, R:

for i = 1,…, N:
// Chosen pseudorandomly from salt
(v1, …, vδ) ← Hash(salt, r, i) ∈ ZNδ

Bi ← Hash(B(i-1 mod N), Bi, Bv1, …, Bvδ)
 
// Step 3: Extract
return BN

Balloon(password, salt, N = space_cost, R = num_rounds):
δ ← 3 // A security parameter.
var B1, …, BN // A buffer of N blocks. 

 
// Step 1: Fill Buffer
B1 ← Hash(password, salt)
for i = 2, …, N:

Bi ← Hash(Bi-1)
 

// Step 2: Mix Buffer
for r = 1, …, R:

for i = 1,…, N:
// Chosen pseudorandomly from salt
(v1, …, vδ) ← Hash(salt, r, i) ∈ ZNδ

Bi ← Hash(B(i-1 mod N), Bi, Bv1, …, Bvδ)
 
// Step 3: Extract
return BN

A conventional hash  
function (e.g., SHA-256)

Balloon(password, salt, N = space_cost, R = num_rounds):
δ ← 3 // A security parameter.
var B1, …, BN // A buffer of N blocks. 

 
// Step 1: Fill Buffer
B1 ← Hash(password, salt)
for i = 2, …, N:

Bi ← Hash(Bi-1)
 

// Step 2: Mix Buffer
for r = 1, …, R:

for i = 1,…, N:
// Chosen pseudorandomly from salt
(v1, …, vδ) ← Hash(salt, r, i) ∈ ZNδ

Bi ← Hash(B(i-1 mod N), Bi, Bv1, …, Bvδ)
 
// Step 3: Extract
return BN

Balloon Hashing Algorithm

Balloon Hashing Algorithm

passwd
salt

Balloon Hashing Algorithm

passwd
salt

Balloon Hashing Algorithm

passwd
salt

Hash

Balloon Hashing Algorithm

passwd
salt

Hash

Balloon Hashing Algorithm

B1

passwd
salt

Hash

B1 B2

Hash

Balloon Hashing Algorithm

B1 B2 B3

Hash

Balloon Hashing Algorithm

B1 B2 B3 …

Hash

Balloon Hashing Algorithm

B1 B2 B3 … BN

Hash

Balloon Hashing Algorithm

B1 B2 B3 … BN

Hash

Balloon Hashing Algorithm

B1 B2 B3 … BN

Hash

Balloon Hashing Algorithm

B1 B2 B3 … BN

Hash

Balloon Hashing Algorithm

B1 B2 B3 … BN

Hash

Balloon Hashing Algorithm

B1 B2 B3 … BN

Hash

Balloon Hashing Algorithm

B1 B2 B3 … BN

Hash

Balloon Hashing Algorithm

B2 B3 … BN

Hash

B1

Balloon Hashing Algorithm

B2 B3 … BN

Hash

B1

Balloon Hashing Algorithm

B2 B3 … BN

Hash

B1

Balloon Hashing Algorithm

B1 B2 B3 … BN

Hash

Balloon Hashing Algorithm

B1 B2 B3 … BN

Hash

Balloon Hashing Algorithm

B1 B2 B3 … BN

Hash

Balloon Hashing Algorithm

B1 B2 B3 … BN

Hash

Balloon Hashing Algorithm

B1 B2 B3 … BN

Hash

Balloon Hashing Algorithm

B1 B2 B3 … BN

Hash

Balloon Hashing Algorithm

B1 B2 B3 … BN

Hash

Balloon Hashing Algorithm

B1 B2 B3 … BN

Hash

Balloon Hashing Algorithm

B1 B2 B3 … BN

Hash

Balloon Hashing Algorithm

B1 B2 B3 … BN

Hash

Balloon Hashing Algorithm

B1 B2 B3 … BN

Hash

Balloon Hashing Algorithm

B1 B2 B3 … BN

Hash

Balloon Hashing Algorithm

B1 B2 B3 … BN

Hash

Balloon Hashing Algorithm

B1 B2 B3 … BN

Hash

Balloon Hashing Algorithm

B1 B2 B3 … BN

Hash

Balloon Hashing Algorithm

B1 B2 B3 … BN

Hash

Balloon Hashing Algorithm

B1 B2 B3 … BN

Hash

Balloon Hashing Algorithm

B1 B2 B3 … BN

Hash

Balloon Hashing Algorithm

B1 B2 B3 … BN

Hash

A “mode of operation”
for a cryptographic

hash function

Balloon Hashing Algorithm

A password hashing function that:

1. Is proven memory-hard (in the sequential setting)

2. Uses a password-independent 
data access pattern

3. Matches the performance of the best 
heuristically secure memory-hard functions

Balloon Hashing

A password hashing function that:

1. Is proven memory-hard (in the sequential setting)

2. Uses a password-independent 
data access pattern

3. Matches the performance of the best 
heuristically secure memory-hard functions

Balloon Hashing

✓

A password hashing function that:

1. Is proven memory-hard (in the sequential setting)

2. Uses a password-independent 
data access pattern

3. Matches the performance of the best 
heuristically secure memory-hard functions

Balloon Hashing

✓
✓

A password hashing function that:

1. Is proven memory-hard (in the sequential setting)

2. Uses a password-independent 
data access pattern

3. Matches the performance of the best 
heuristically secure memory-hard functions

Balloon Hashing

✓
✓

The challenge

Proving Memory-Hardness

Theorem [informal]: 
Computing the N-block R-round Balloon function w.h.p.,
when δ=7, with space S ≤ N/8 requires time T such that 

S • T ≥ (2R - 1) / 8 • N2 .

Proving Memory-Hardness

Theorem [informal]: 
Computing the N-block R-round Balloon function w.h.p.,
when δ=7, with space S ≤ N/8 requires time T such that 

S • T ≥ (2R - 1) / 8 • N2 .

Saving a factor of 8 in
space causes a slowdown
exponential in # rounds

Proving Memory-Hardness

Theorem [informal]: 
Computing the N-block R-round Balloon function w.h.p.,
when δ=7, with space S ≤ N/8 requires time T such that 

S • T ≥ (2R - 1) / 8 • N2 .

Saving a factor of 8 in
space causes a slowdown
exponential in # rounds

When R=20, using 8⨯
less space requires using

60,000⨯ more time

Proving Memory-Hardness

Theorem [informal]: 
Computing the N-block R-round Balloon function w.h.p.,
when δ=7, with space S ≤ N/8 requires time T such that 

S • T ≥ (2R - 1) / 8 • N2 .

The proof works by inspecting the Balloon computation's data-
dependency graph.

We draw heavily on prior work on pebbling arguments
[Paterson & Hewitt 1970] [Paul & Tarjan 1978] [Dwork, Naor, Wee 2005] 
[Dziembowski, Kazana, Wichs 2011] [Alwen & Serbinenko 2015]

Proving Memory-Hardness

Theorem [informal]: 
Computing the N-block R-round Balloon function w.h.p.,
when δ=7, with space S ≤ N/8 requires time T such that 

S • T ≥ (2R - 1) / 8 • N2 .

2 KiB 16 KiB 128 KiB 1 MiB 8 MiB 64 MiB

Minimum buffer size required

10−1

100

101

102

103

104
H
as
h
es
/s
ec

(o
n
e
co
re
)

PBKDF2

bcrypt

Be
tte
r

Using Balloon (δ=3). Both algorithms take four passes over memory.

2 KiB 16 KiB 128 KiB 1 MiB 8 MiB 64 MiB

Minimum buffer size required

10−1

100

101

102

103

104
H
as
h
es
/s
ec

(o
n
e
co
re
)

PBKDF2

bcrypt

Be
tte
r

105 iters of
SHA512

Using Balloon (δ=3). Both algorithms take four passes over memory.

2 KiB 16 KiB 128 KiB 1 MiB 8 MiB 64 MiB

Minimum buffer size required

10−1

100

101

102

103

104
H
as
h
es
/s
ec

(o
n
e
co
re
)

PBKDF2

bcrypt

Be
tte
r

Using Balloon (δ=3). Both algorithms take four passes over memory.

2 KiB 16 KiB 128 KiB 1 MiB 8 MiB 64 MiB

Minimum buffer size required

10−1

100

101

102

103

104
H
as
h
es
/s
ec

(o
n
e
co
re
)

PBKDF2

bcrypt

Be
tte
r

cost = 10

Using Balloon (δ=3). Both algorithms take four passes over memory.

2 KiB 16 KiB 128 KiB 1 MiB 8 MiB 64 MiB

Minimum buffer size required

10−1

100

101

102

103

104
H
as
h
es
/s
ec

(o
n
e
co
re
)

PBKDF2

bcrypt

Be
tte
r

Using Balloon (δ=3). Both algorithms take four passes over memory.

2 KiB 16 KiB 128 KiB 1 MiB 8 MiB 64 MiB

Minimum buffer size required

10−1

100

101

102

103

104
H
as
h
es
/s
ec

(o
n
e
co
re
)

PBKDF2

bcrypt

Be
tte
r

Argon2 (SHA-512)

Using Balloon (δ=3). Both algorithms take four passes over memory.

(v1.2.1)

2 KiB 16 KiB 128 KiB 1 MiB 8 MiB 64 MiB

Minimum buffer size required

10−1

100

101

102

103

104
H
as
h
es
/s
ec

(o
n
e
co
re
)

PBKDF2

bcrypt

Be
tte
r

Balloon (SHA-512)

Argon2 (SHA-512)

Using Balloon (δ=3). Both algorithms take four passes over memory.

(v1.2.1)

2 KiB 16 KiB 128 KiB 1 MiB 8 MiB 64 MiB

Minimum buffer size required

10−1

100

101

102

103

104
H
as
h
es
/s
ec

(o
n
e
co
re
)

PBKDF2

bcrypt

Be
tte
r

Balloon (SHA-512)

Argon2 (SHA-512)

At 10 hashes per
sec per core, how much

memory can you fill?

Using Balloon (δ=3). Both algorithms take four passes over memory.

(v1.2.1)

2 KiB 16 KiB 128 KiB 1 MiB 8 MiB 64 MiB

Minimum buffer size required

10−1

100

101

102

103

104
H
as
h
es
/s
ec

(o
n
e
co
re
)

PBKDF2

bcrypt

Be
tte
r

Balloon (SHA-512)

Argon2 (SHA-512)

At 10 hashes per
sec per core, how much

memory can you fill?

Using Balloon (δ=3). Both algorithms take four passes over memory.

(v1.2.1)

2 KiB 16 KiB 128 KiB 1 MiB 8 MiB 64 MiB

Minimum buffer size required

10−1

100

101

102

103

104
H
as
h
es
/s
ec

(o
n
e
co
re
)

PBKDF2

bcrypt

Be
tte
r

Balloon (SHA-512)

Argon2 (SHA-512)

At 10 hashes per
sec per core, how much

memory can you fill?

Using Balloon (δ=3). Both algorithms take four passes over memory.

(v1.2.1)

2 KiB 16 KiB 128 KiB 1 MiB 8 MiB 64 MiB

Minimum buffer size required

10−1

100

101

102

103

104
H
as
h
es
/s
ec

(o
n
e
co
re
)

PBKDF2

bcrypt

Be
tte
r

Balloon (SHA-512)

Argon2 (SHA-512)

At 10 hashes per
sec per core, how much

memory can you fill?

Using Balloon (δ=3). Both algorithms take four passes over memory.

(v1.2.1)

2 KiB 16 KiB 128 KiB 1 MiB 8 MiB 64 MiB

Minimum buffer size required

10−1

100

101

102

103

104
H
as
h
es
/s
ec

(o
n
e
co
re
)

PBKDF2

bcrypt

Be
tte
r

Balloon (SHA-512)

Argon2 (SHA-512)

Using Balloon (δ=3). Both algorithms take four passes over memory.

(v1.2.1)

2 KiB 16 KiB 128 KiB 1 MiB 8 MiB 64 MiB

Minimum buffer size required

10−1

100

101

102

103

104
H
as
h
es
/s
ec

(o
n
e
co
re
)

PBKDF2

bcrypt

Using Balloon (δ=3). Both algorithms take four passes over memory.

2 KiB 16 KiB 128 KiB 1 MiB 8 MiB 64 MiB

Minimum buffer size required

10−1

100

101

102

103

104
H
as
h
es
/s
ec

(o
n
e
co
re
)

PBKDF2

bcrypt
Using a non-standard

cryptographic hash function

Using Balloon (δ=3). Both algorithms take four passes over memory.

2 KiB 16 KiB 128 KiB 1 MiB 8 MiB 64 MiB

Minimum buffer size required

10−1

100

101

102

103

104
H
as
h
es
/s
ec

(o
n
e
co
re
)

PBKDF2

bcrypt

Using Balloon (δ=3). Both algorithms take four passes over memory.

2 KiB 16 KiB 128 KiB 1 MiB 8 MiB 64 MiB

Minimum buffer size required

10−1

100

101

102

103

104
H
as
h
es
/s
ec

(o
n
e
co
re
)

PBKDF2

bcrypt

Argon2 (SHA-512)

Using Balloon (δ=3). Both algorithms take four passes over memory.

(v1.2.1)

2 KiB 16 KiB 128 KiB 1 MiB 8 MiB 64 MiB

Minimum buffer size required

10−1

100

101

102

103

104
H
as
h
es
/s
ec

(o
n
e
co
re
)

PBKDF2

bcrypt

Argon2 (SHA-512)
Balloon (ArgonHash)

Using Balloon (δ=3). Both algorithms take four passes over memory.

(v1.2.1)

2 KiB 16 KiB 128 KiB 1 MiB 8 MiB 64 MiB

Minimum buffer size required

10−1

100

101

102

103

104
H
as
h
es
/s
ec

(o
n
e
co
re
)

PBKDF2

bcrypt

Argon2 (SHA-512)
Balloon (ArgonHash)

Using Balloon (δ=3). Both algorithms take four passes over memory.

(v1.2.1)

2 KiB 16 KiB 128 KiB 1 MiB 8 MiB 64 MiB

Minimum buffer size required

10−1

100

101

102

103

104
H
as
h
es
/s
ec

(o
n
e
co
re
)

PBKDF2

bcrypt

Argon2 (SHA-512)
Balloon (ArgonHash)

Using Balloon (δ=3). Both algorithms take four passes over memory.

(v1.2.1)

2 KiB 16 KiB 128 KiB 1 MiB 8 MiB 64 MiB

Minimum buffer size required

10−1

100

101

102

103

104
H
as
h
es
/s
ec

(o
n
e
co
re
)

PBKDF2

bcrypt

Argon2 (SHA-512)
Balloon (ArgonHash)

Using Balloon (δ=3). Both algorithms take four passes over memory.

(v1.2.1)

Plan

I. Background on password hashing
II. Goals
III. The Balloon algorithm
IV. Discussion

Plan

I. Background on password hashing
II. Goals
III. The Balloon algorithm
IV. Discussion

Discussion: Parallel attacks

Discussion: Parallel attacks

• Alwen and Blocki (2016) show, in a parallel setting, it’s
possible to execute a space-saving attack against any
memory-hard function w/ data-indep access pattern

Discussion: Parallel attacks

• Alwen and Blocki (2016) show, in a parallel setting, it’s
possible to execute a space-saving attack against any
memory-hard function w/ data-indep access pattern
— Including Balloon, Argon2i, etc.

Discussion: Parallel attacks

• Alwen and Blocki (2016) show, in a parallel setting, it’s
possible to execute a space-saving attack against any
memory-hard function w/ data-indep access pattern
— Including Balloon, Argon2i, etc.

• The attack only applies when the memory usage is large
enough (> 1 GB, but would only use ~16 MB in practice)

Discussion: Parallel attacks

• Alwen and Blocki (2016) show, in a parallel setting, it’s
possible to execute a space-saving attack against any
memory-hard function w/ data-indep access pattern
— Including Balloon, Argon2i, etc.

• The attack only applies when the memory usage is large
enough (> 1 GB, but would only use ~16 MB in practice)

• The attack would require special-purpose hardware with many
cores and shared memory

Discussion: Parallel attacks

• Alwen and Blocki (2016) show, in a parallel setting, it’s
possible to execute a space-saving attack against any
memory-hard function w/ data-indep access pattern
— Including Balloon, Argon2i, etc.

• The attack only applies when the memory usage is large
enough (> 1 GB, but would only use ~16 MB in practice)

• The attack would require special-purpose hardware with many
cores and shared memory

→ Not yet clear whether these attacks are of practical concern.

Discussion: Comparison with Argon2

Discussion: Comparison with Argon2

Argon2: Winner of the recent Password Hashing Competition

Discussion: Comparison with Argon2

Argon2: Winner of the recent Password Hashing Competition
— Simple design, likely will see wide adoption

Discussion: Comparison with Argon2

Argon2: Winner of the recent Password Hashing Competition
— Simple design, likely will see wide adoption
— No proof of memory-hardness (in any model)

Discussion: Comparison with Argon2

Argon2: Winner of the recent Password Hashing Competition
— Simple design, likely will see wide adoption
— No proof of memory-hardness (in any model)
— Argon2i = variant with data-independent access pattern

Discussion: Comparison with Argon2

Argon2: Winner of the recent Password Hashing Competition
— Simple design, likely will see wide adoption
— No proof of memory-hardness (in any model)
— Argon2i = variant with data-independent access pattern

Our Contributions

Discussion: Comparison with Argon2

Argon2: Winner of the recent Password Hashing Competition
— Simple design, likely will see wide adoption
— No proof of memory-hardness (in any model)
— Argon2i = variant with data-independent access pattern

Our Contributions
• We demonstrate a practical attack against Argon2i’s memory-

hardness properties 
(Designers have since modified the construction)

Discussion: Comparison with Argon2

Argon2: Winner of the recent Password Hashing Competition
— Simple design, likely will see wide adoption
— No proof of memory-hardness (in any model)
— Argon2i = variant with data-independent access pattern

Our Contributions
• We demonstrate a practical attack against Argon2i’s memory-

hardness properties 
(Designers have since modified the construction)

• We prove that much better attacks are impossible

Discussion: Comparison with Argon2

Argon2: Winner of the recent Password Hashing Competition
— Simple design, likely will see wide adoption
— No proof of memory-hardness (in any model)
— Argon2i = variant with data-independent access pattern

Our Contributions
• We demonstrate a practical attack against Argon2i’s memory-

hardness properties 
(Designers have since modified the construction)

• We prove that much better attacks are impossible

→ Balloon has stronger proven security properties than Argon2i. 
(In practice…)

Conclusion

https://eprint.iacr.org/2016/027  
https://github.com/henrycg/balloon/

Henry Corrigan-Gibbs 
henrycg@stanford.edu

Conclusion

• Memory-hard password hashing functions
increase the cost of offline dictionary attacks.

https://eprint.iacr.org/2016/027  
https://github.com/henrycg/balloon/

Henry Corrigan-Gibbs 
henrycg@stanford.edu

Conclusion

• Memory-hard password hashing functions
increase the cost of offline dictionary attacks.

• Balloon is a password hashing function that: 
– has proven memory-hardness properties 
 against sequential attacks, 

– uses a password-indep. access pattern, and  
– is fast enough for real-world use.

https://eprint.iacr.org/2016/027  
https://github.com/henrycg/balloon/

Henry Corrigan-Gibbs 
henrycg@stanford.edu

Conclusion

• Memory-hard password hashing functions
increase the cost of offline dictionary attacks.

• Balloon is a password hashing function that: 
– has proven memory-hardness properties 
 against sequential attacks, 

– uses a password-indep. access pattern, and  
– is fast enough for real-world use.

• Balloon+SHA512* is strictly better than iterated
hashing (PBKDF2-SHA512).

https://eprint.iacr.org/2016/027  
https://github.com/henrycg/balloon/

Henry Corrigan-Gibbs 
henrycg@stanford.edu

Conclusion

• Memory-hard password hashing functions
increase the cost of offline dictionary attacks.

• Balloon is a password hashing function that: 
– has proven memory-hardness properties 
 against sequential attacks, 

– uses a password-indep. access pattern, and  
– is fast enough for real-world use.

• Balloon+SHA512* is strictly better than iterated
hashing (PBKDF2-SHA512).

https://eprint.iacr.org/2016/027  
https://github.com/henrycg/balloon/

Henry Corrigan-Gibbs 
henrycg@stanford.edu

Conclusion

• Memory-hard password hashing functions
increase the cost of offline dictionary attacks.

• Balloon is a password hashing function that: 
– has proven memory-hardness properties 
 against sequential attacks, 

– uses a password-indep. access pattern, and  
– is fast enough for real-world use.

• Balloon+SHA512* is strictly better than iterated
hashing (PBKDF2-SHA512).

https://eprint.iacr.org/2016/027  
https://github.com/henrycg/balloon/

Henry Corrigan-Gibbs 
henrycg@stanford.edu

Attacking scrypt

An attacker who learns the memory access pattern of
scrypt(passwd) can run a dictionary attack in very little space

Attacking scrypt

An attacker who learns the memory access pattern of
scrypt(passwd) can run a dictionary attack in very little space

scrypt(passwd)

Attacking scrypt

An attacker who learns the memory access pattern of
scrypt(passwd) can run a dictionary attack in very little space

0x23AD

0x231F

0x2487

0x167A

0x1FD4

...

scrypt(passwd)

Attacking scrypt

An attacker who learns the memory access pattern of
scrypt(passwd) can run a dictionary attack in very little space

0x23AD

0x231F

0x2487

0x167A

0x1FD4

...

scrypt(passwd) scrypt(“12345”)

Attacking scrypt

An attacker who learns the memory access pattern of
scrypt(passwd) can run a dictionary attack in very little space

0x23AD

0x231F

0x2487

0x167A

0x1FD4

...

scrypt(passwd)

0x0631

scrypt(“12345”)

Attacking scrypt

An attacker who learns the memory access pattern of
scrypt(passwd) can run a dictionary attack in very little space

0x23AD

0x231F

0x2487

0x167A

0x1FD4

...

scrypt(passwd)

0x0631

scrypt(“12345”)X

Attacking scrypt

An attacker who learns the memory access pattern of
scrypt(passwd) can run a dictionary attack in very little space

0x23AD

0x231F

0x2487

0x167A

0x1FD4

...

scrypt(passwd)

0x0631

scrypt(“12345”) scrypt(“abc123”)X

Attacking scrypt

An attacker who learns the memory access pattern of
scrypt(passwd) can run a dictionary attack in very little space

0x23AD

0x231F

0x2487

0x167A

0x1FD4

...

scrypt(passwd)

0x0631

scrypt(“12345”)

0x2176

scrypt(“abc123”)X

Attacking scrypt

An attacker who learns the memory access pattern of
scrypt(passwd) can run a dictionary attack in very little space

0x23AD

0x231F

0x2487

0x167A

0x1FD4

...

scrypt(passwd)

0x0631

scrypt(“12345”)

0x2176

scrypt(“abc123”)XX

Attacking scrypt

An attacker who learns the memory access pattern of
scrypt(passwd) can run a dictionary attack in very little space

0x23AD

0x231F

0x2487

0x167A

0x1FD4

...

scrypt(passwd)

0x0631

scrypt(“12345”)

0x2176

scrypt(“abc123”)XX
If data access pattern

leaks, scrypt is  
not space hard!

