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Balloon Hashing

A new password hashing function that:

1. Is proven memory-hard (in the sequential setting)

2. Uses a password-independent 
data access pattern

3. Matches the performance of the best 
heuristically secure memory-hard functions
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dave 0xfb791a9a 0x1dbd71f3

For each row, 
attacker wants to make 

230 guesses
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Overall Goal
A good password hashing function makes the attacker’s 
job as difficult as possible.

If the authentication server can compute…
X hashes per $ of energy

then an attacker with custom hardware should 
only be able to compute…

(1+ε)X hashes per $ of energy
By this metric, 

conventional hash functions 
(e.g., SHA-256) are far from 

optimal!
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Cost ≈ Area



Cost ≈ Area

1000000x 
efficiency gain!



“Avalon”
http://zeptobars.ru/en/read/avalon-bitcoin-mining-unit-rig
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Memory-Hardness
 
Memory-hard functions use a large amount of working 
space during their computation  
→ Attacker must keep caches on chip  
→ Decreases the advantage of special-purpose HW 
[Reinhold 1999], [Dwork, Goldberg, Naor 2003], [Abadi et al. 2005], [Percival 2009]

Typical technique: 
1. Fill – fill buffer with pseudo-random bytes 
2. Mix – read and write pseudo-random blocks in buffer 
3. Extract – extract function output from buffer contents
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Memory-hard functions: [Abadi et al. 2005] [Percival 2009]
Random oracles: [Bellare & Rogaway 1993]
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Informally, a memory-hard function, with hardness parameter 
N, requires space S and time T to compute, where

S · T    ∈   Ω( N2 ) 
in the random-oracle model.

Intuition: any adversary who tries to save space will pay a 
large penalty in computation time.

Goal 1: Memory-Hardness

Memory-hard functions: [Abadi et al. 2005] [Percival 2009]
Random oracles: [Bellare & Rogaway 1993]
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Goal 2: Side-Channel Resistance

• The memory access pattern should not leak 
information about the password being hashed  
[Tsunoo et al. 2003] [Bernstein 2005] [Bonneau & Mironov 2006] […]

Goal 3: Real-World Practical

• The hash should be able to support hundreds of 
logins per second while filling L2 cache (or more)



Existing Schemes



Existing Schemes

bcrypt, PBKDF2 [Provos & Mazières 1999], [Kaliski 2000] 
Not memory hard



Existing Schemes

bcrypt, PBKDF2 [Provos & Mazières 1999], [Kaliski 2000] 
Not memory hard

scrypt [Percival 2009] 
Password-dependent memory access pattern 



Existing Schemes

bcrypt, PBKDF2 [Provos & Mazières 1999], [Kaliski 2000] 
Not memory hard

scrypt [Percival 2009] 
Password-dependent memory access pattern 

Parallel-secure schemes 
May be impractical for realistic parameter sizes

[Alwen & Serbinenko 2015] 
[Alwen, Blocki, Pietrzak 2016]



Existing Schemes

bcrypt, PBKDF2 [Provos & Mazières 1999], [Kaliski 2000] 
Not memory hard

scrypt [Percival 2009] 
Password-dependent memory access pattern 

Parallel-secure schemes 
May be impractical for realistic parameter sizes

Argon2i and Catena [Biryukov et al. 2015] [Forler et al. 2015]  
Lack formal security analysis

[Alwen & Serbinenko 2015] 
[Alwen, Blocki, Pietrzak 2016]



Existing Schemes

bcrypt, PBKDF2 [Provos & Mazières 1999], [Kaliski 2000] 
Not memory hard

scrypt [Percival 2009] 
Password-dependent memory access pattern 

Parallel-secure schemes 
May be impractical for realistic parameter sizes

Argon2i and Catena [Biryukov et al. 2015] [Forler et al. 2015]  
Lack formal security analysis

[Alwen & Serbinenko 2015] 
[Alwen, Blocki, Pietrzak 2016]

We demonstrate a 
practical attack against 

Argon2i
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A “mode of operation” 
for a cryptographic 

hash function

Balloon Hashing Algorithm
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when δ=7, with space S ≤ N/8 requires time T such that 

S • T ≥ (2R - 1) / 8 • N2 .

Saving a factor of 8 in 
space causes a slowdown 
exponential in # rounds

When R=20, using 8⨯ 
less space requires using 

60,000⨯ more time



Proving Memory-Hardness

Theorem [informal]: 
Computing the N-block R-round Balloon function w.h.p., 
when δ=7, with space S ≤ N/8 requires time T such that 

S • T ≥ (2R - 1) / 8 • N2 .



The proof works by inspecting the Balloon computation's data-
dependency graph.

We draw heavily on prior work on pebbling arguments
[Paterson & Hewitt 1970] [Paul & Tarjan 1978] [Dwork, Naor, Wee 2005] 
[Dziembowski, Kazana, Wichs 2011] [Alwen & Serbinenko 2015]

Proving Memory-Hardness

Theorem [informal]: 
Computing the N-block R-round Balloon function w.h.p., 
when δ=7, with space S ≤ N/8 requires time T such that 

S • T ≥ (2R - 1) / 8 • N2 .
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Discussion: Parallel attacks

• Alwen and Blocki (2016) show, in a parallel setting, it’s 
possible to execute a space-saving attack against any 
memory-hard function w/ data-indep access pattern
— Including Balloon, Argon2i, etc.

• The attack only applies when the memory usage is large 
enough (> 1 GB, but would only use ~16 MB in practice)

• The attack would require special-purpose hardware with many 
cores and shared memory

→ Not yet clear whether these attacks are of practical concern.
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Discussion: Comparison with Argon2

Argon2: Winner of the recent Password Hashing Competition
— Simple design, likely will see wide adoption
— No proof of memory-hardness (in any model)
— Argon2i = variant with data-independent access pattern

Our Contributions
• We demonstrate a practical attack against Argon2i’s memory-

hardness properties 
(Designers have since modified the construction)

• We prove that much better attacks are impossible

→ Balloon has stronger proven security properties than Argon2i. 
(In practice… )
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Attacking scrypt

An attacker who learns the memory access pattern of 
scrypt(passwd) can run a dictionary attack in very little space

0x23AD

0x231F

0x2487

0x167A

0x1FD4

...

scrypt(passwd)

0x0631

scrypt(“12345”)

0x2176

scrypt(“abc123”)XX
If data access pattern 

leaks, scrypt is  
not space hard!


