

Institut Mines-Telecom

Taylor Expansion of Maximum Likelihood Attacks

<u>Nicolas Bruneau</u>^{1,2}, Sylvain Guilley^{1,3}, Annelie Heuser¹, Olivier Rioul¹, François-Xavier Standaert⁴, Yannick Teglia⁵

- Télécom-ParisTech, Crypto & ComNum Group, Paris, FRANCE
- ² STMicroelectronics, AST division, Rousset, FRANCE
- ³ Secure-IC S.A.S., Rennes, FRANCE
- ⁴ Université Catholique de Louvain, Louvain-la-Neuve, BELGIQUE
- ⁵ Gemalto, La Ciotat, FRANCE

ASIACRYPT 2016 — Hanoi, Vietnam

Nicolas Bruneau, Sylvain Guilley, Annelie Heuser, Olivier Rioul, François-Xavier Standaert, Yannick Teglia

2/30

December 2016

Introduction Side-Channel Analysis as a Threat Protection Methods Template Attacks

Rounded Optimal Attack Truncated Taylor Expansion Complexity

Case Study Protected Table Recomputation Implementation Bi-Variate Attacks Multi-Variate Attacks

Side-Channel Analysis as a Threat Protection Methods Template Attacks

Introduction Side-Channel Analysis as a Threat Protection Methods Template Attacks

Rounded Optimal Attack

Case Study

Side-Channel Analysis as a Threat Protection Methods Template Attacks

Side-Channel Analysis on Embedded Systems

Side-Channel Analysis as a Threat Protection Methods Template Attacks

$(\Omega - 1)$ th-Order Masking: Principle

Aim

The sensitive variable Z is randomly split into Ω shares: \Rightarrow need random masks M_i , $0 < i < \Omega$

Ζ

$Z \perp M_1 \perp \ldots \perp M_{\Omega-1} \qquad M_1 \qquad \cdots \qquad M_{\Omega-1}$

Side-Channel Analysis as a Threat Protection Methods Template Attacks

$(\Omega - 1)$ th-Order Masking: Principle

Aim

The sensitive variable Z is randomly split into Ω shares: \Rightarrow need random masks M_i , $0 < i < \Omega$

Side-Channel Analysis as a Threat Protection Methods Template Attacks

$(\Omega - 1)$ th-Order Masking: Principle

Aim

The sensitive variable Z is randomly split into Ω shares: \Rightarrow need random masks M_i , $0 < i < \Omega$

Consequence

Increases the minimum key-dependent statistical moment.

Side-Channel Analysis as a Threat Protection Methods Template Attacks

Shuffling: Principle

Aim

Side-Channel Analysis as a Threat Protection Methods Template Attacks

Shuffling: Principle

Aim

Side-Channel Analysis as a Threat Protection Methods Template Attacks

Shuffling: Principle

Aim

Side-Channel Analysis as a Threat Protection Methods Template Attacks

Shuffling: Principle

Aim

Side-Channel Analysis as a Threat Protection Methods Template Attacks

Shuffling: Principle

Aim

Randomize the order of execution \Rightarrow need a random permutation π

 Z_3

Side-Channel Analysis as a Threat Protection Methods Template Attacks

Shuffling: Principle

Aim

Side-Channel Analysis as a Threat Protection Methods Template Attacks

Shuffling: Principle

Aim

Side-Channel Analysis as a Threat Protection Methods Template Attacks

Shuffling: Principle

Aim

Randomize the order of execution

 \Rightarrow need a random permutation π

Side-Channel Analysis as a Threat Protection Methods Template Attacks

Shuffling: Principle

Aim

Randomize the order of execution

 \Rightarrow need a random permutation π

Consequences

The attacks are applied on the sum of the variables \Rightarrow increases the algorithmic noise.

Side-Channel Analysis as a Threat Protection Methods Template Attacks

Protection Parameters

The security level of the protections depends on these parameters:

Masking

- Ω : the number of shares $(\Omega 1 \text{ masks})$;
- O: the order (i.e. the minimal key-dependent statistical moment).

Perfect masking scheme $\Leftrightarrow O = \Omega$.

Shuffling

• Π the size of the permutation.

Side-Channel Analysis as a Threat Protection Methods Template Attacks

Template attacks are the most powerful in a information-theoretic sense [Chari et al., 2002].

Offline Profiling

The leakage model is learned:

- non-parametric methods (e.g. histogram, kernel methods...);
- parametric methods (e.g. mixture models).

Online Attack

Recover the key using the models by applying a maximum likelihood (ML) attack.

Side-Channel Analysis as a Threat Protection Methods Template Attacks

Parametric or Non-Parametric ?

Parametric

The only random part is the noise with known distribution.

- easy to estimate;
- shuffle and mask are known;
- many templates are learned.

Non-Parametric

Shuffle and masks are part of the noise.

- can be hard to estimate \Rightarrow curse of dimensionality;
- shuffle and mask are unknown.

Side-Channel Analysis as a Threat Protection Methods Template Attacks

Parametric or Non-Parametric ?

Parametric

The only random part is the noise with known distribution.

- easy to estimate;
- shuffle and mask are known;
- many templates are learned.

Non-Parametric

Shuffle and masks are part of the noise.

- can be hard to estimate \Rightarrow curse of dimensionality;
- shuffle and mask are unknown.

Side-Channel Analysis as a Threat Protection Methods Template Attacks

Notations for the Online attack

The attacks are applied on:

- ▶ *Q* queries (i.e. the traces).
- D dimension (i.e. the number of leakage samples);
- A leakage measurement is $X = y(t, k^*, R) + N$ where:
 - $y(t, k^*, R)$ is the deterministic part of the model;
 - ▶ the secret key k^{*} and the plaintext t are n-bit words;
 - R is the random countermeasure;
 - *N* is a random Gaussian noise of variance σ^2 .

Side-Channel Analysis as a Threat Protection Methods Template Attacks

Maximum Likelihood Attacks

Theorem (Maximum Likelihood [Bruneau et al., 2014])

When the model is known the optimal distinguisher (OPT) consists in maximizing the sum over all traces q = 1, ..., Q of the log-likelihood:

$$LL = \sum_{q=1}^{Q} \log \mathbb{E} \exp \frac{-\|x^{(q)} - y(t^{(q)}, k, R)\|^2}{2\sigma^2} ,$$

where expectation \mathbb{E} is applied to the random variable $R \in \mathcal{R}$ and $\|\cdot\|$ is the Euclidean norm on \mathbb{R}^D .

For convenience we let $\gamma = \frac{1}{2\sigma^2}$ be the SNR parameter.

Side-Channel Analysis as a Threat Protection Methods Template Attacks

Complexity in presence of Masking and Shuffling

$$\mathcal{O}\left(\begin{array}{c} \mathbf{Q} & \mathbf{D} \\ \end{array}, (2^n)^{\Omega-1} & \Pi! \right)$$

number of traces

- dimension of the attack
- number of possible share values
- number of possible permutations

Side-Channel Analysis as a Threat Protection Methods Template Attacks

Complexity in presence of Masking and Shuffling

$$\mathcal{O}\left(\begin{array}{c} \mathbf{Q} & \mathbf{D} \\ \uparrow & \uparrow \end{array} \cdot \begin{array}{c} (2^n)^{\Omega-1} & \mathbf{\Pi}! \end{array} \right)$$

number of traces /

- dimension of the attack
- number of possible share values
- number of possible permutations

Side-Channel Analysis as a Threat Protection Methods Template Attacks

Complexity in presence of Masking and Shuffling

$$\mathcal{O}\left(\begin{array}{c} \mathbf{Q} & \mathbf{D} \\ \uparrow \end{array} \cdot \begin{array}{c} (2^n)^{\Omega-1} & \Pi! \end{array} \right)$$

- number of traces
- dimension of the attack -
- number of possible share values —
- number of possible permutations

Side-Channel Analysis as a Threat Protection Methods Template Attacks

Complexity in presence of Masking and Shuffling

- $\mathcal{O}\left(\begin{array}{c} Q \\ \uparrow \end{array} \right) \stackrel{D}{\uparrow} \left(\begin{array}{c} (2^n)^{\Omega-1} \\ \uparrow \end{array} \right) \stackrel{\Pi!}{\uparrow} \left(\begin{array}{c} 1 \\ \uparrow \end{array} \right)$
- number of traces
- dimension of the attack -
- number of possible share values -
- number of possible permutations -

Side-Channel Analysis as a Threat Protection Methods Template Attacks

Complexity in presence of Masking and Shuffling

- $\mathcal{O}\left(\begin{array}{c} \mathbf{Q} \cdot \mathbf{D} \cdot (2^n)^{\Omega-1} \cdot \Pi! \\ \uparrow & \uparrow \end{array}\right)$
- number of traces
- dimension of the attack -
- number of possible share values -
- number of possible permutations –

Not computable for large Π !

Truncated Taylor Expansion Complexity

Introduction

Rounded Optimal Attack Truncated Taylor Expansion Complexity

Case Study

Taylor Expansion of Optimal Attacks in Gaussian Noise

The optimal attack consists in maximizing the sum over all traces $q = 1, \ldots, Q$ of the log-likelihood:

$$LL = \sum_{q=1}^{Q} \log \mathbb{E} \exp \frac{-\|x^{(q)} - y(t^{(q)}, k, R)\|^2}{2\sigma^2}$$

It can be rewritten using the cumulant generating function:

$$\mathrm{LL} = \sum_{q=1}^{Q} \sum_{\ell=1}^{+\infty} \frac{\kappa_{\ell}^{(q)}}{\ell!} (-\gamma)^{\ell} \ ,$$

where $\kappa_{\ell}^{(q)}$ is the ℓ th-order cumulant of $||x^{(q)} - y(t^{(q)}, k, R)||^2$.

Truncated Taylor Expansion Complexity

High order Cumulants

The ℓ th-order cumulant of $||x - y(t, k, R)||^2$ is given by:

$$\kappa_\ell = \mu_\ell - \sum_{\ell'=1}^{\ell-1} \binom{\ell-1}{\ell'-1} \kappa_{\ell'} \mu_{\ell-\ell'} \qquad (\ell \ge 1),$$

where μ_{ℓ} is the corresponding moment:

$$\mu_{\ell} = \mathbb{E}_{R}(\|x - y(t, k, R)\|^{2\ell})$$

Truncated Taylor Expansion Complexity

Rounded Optimal Attack

Rounded Optimal Attack (ROPT_L)

The rounded optimal *Lth-degree attack* consists in maximizing the sum over all traces of the *L*th-order Taylor expansion LL_L in the SNR of the log-likelihood :

$$\mathrm{LL}_L = \sum_{q=1}^Q \sum_{\ell=1}^L (-1)^\ell \kappa_\ell^{(q)} \frac{\gamma^\ell}{\ell!} \ ,$$

and we have

$$LL = LL_L + o(\gamma^L)$$

Truncated Taylor Expansion Complexity

Complexity Gain

► number of possible share values ► number of traces $\mathcal{O}\left(\boxed{Q} \cdot L \cdot \binom{D+L-1}{L} \cdot 2^{(\Omega-1)n} \cdot \binom{\Pi}{\min(\lceil \frac{\Pi}{2} \rceil, L)} \right)$

Factorial terms

- dimension of the attack
- degree of the Taylor Expansion
- size of the permutation

Truncated Taylor Expansion Complexity

Complexity Gain

- number of possible share values –
- number of traces,

$$\mathcal{O}\left(\begin{array}{c} Q \\ Q \\ L \\ L\end{array}\right) \cdot 2^{(\Omega-1)n} \cdot \left(\prod_{\substack{min(\left\lceil \frac{\Pi}{2} \right\rceil, L)}}^{\Pi} \right)$$

Factorial terms

- dimension of the attack
- degree of the Taylor Expansion
- size of the permutation

Truncated Taylor Expansion Complexity

Complexity Gain

- degree of the Taylor Expansion
- size of the permutation

Truncated Taylor Expansion Complexity

Complexity Gain

Truncated Taylor Expansion Complexity

Complexity Gain

size of the permutation

Truncated Taylor Expansion Complexity

Complexity Gain

- number of possible share values
- number of traces;

$$\mathcal{O}\left(\begin{array}{c} \overbrace{Q}^{\downarrow} \cdot L \cdot \binom{D+L-1}{L} \cdot 2^{(\Omega-1)n} \cdot \binom{\Pi}{\min\left(\left\lceil \frac{\Pi}{2} \right\rceil, L\right)} \right)$$

- Factorial terms
 - dimension of the attack
 - degree of the Taylor Expansion
 - size of the permutation

Truncated Taylor Expansion Complexity

Complexity Gain

size of the permutation

Reduces to small constants when $L \ll D$

Outline

Protected Table Recomputation Implementation Bi-Variate Attacks Multi-Variate Attacks

Introduction

Rounded Optimal Attack

Case Study Protected Table Recomputation Implementation Bi-Variate Attacks Multi-Variate Attacks

Implementation of Masking Schemes

In masking schemes, while the implementation of the linear parts is obvious, that of the non linear parts is more difficult.

- algebraic methods [Blömer et al., 2004];
- global look-up table method [Prouff and Rivain, 2007];
- table recomputation methods which precompute a masked S-box stored in a table [Chari et al., 1999].

In [Coron, 2014] a table recomputation scheme secure at order $\Omega-1$ was presented.

Protected Table Recomputation Implementation Bi-Variate Attacks Multi-Variate Attacks

Table Recomputation Algorithm

input : t, one byte of plaintext, and k, one byte of key
output: The application of AddRoundKey and SubBytes on t, i.e., $S(t \oplus k)$ 1 $m \leftarrow_{\mathcal{R}} \mathbb{F}_{2}^{n}, m' \leftarrow_{\mathcal{R}} \mathbb{F}_{2}^{n} //$ Draw of random input and output masks
2 for $\omega \in \{0, 1, \dots, 2^{n} - 1\}$ do // Sbox masking
3 $| z \leftarrow \omega \oplus m //$ Masked input
4 $z' \leftarrow S[\omega] \oplus m' //$ Masked output
5 $| S'[z] \leftarrow z' //$ Creating the masked Sbox entry
6 end
7 $t \leftarrow t \oplus m //$ Plaintext masking
8 $t \leftarrow t \oplus k //$ Masked AddRoundKey
9 $t \leftarrow S'[t] //$ Masked SubBytes
10 $t \leftarrow t \oplus m' //$ Demasking
11 return t

- usual 2-variate 2nd-order attack;
- 2-stage CPA attack [Pan et al., 2009];
- ▶ improved (2ⁿ + 1)-variate 2nd-order attack on the input [Bruneau et al., 2014].

Protected Table Recomputation Implementation Bi-Variate Attacks Multi-Variate Attacks

Protected Table Recomputation Algorithm

input : *t*, one byte of plaintext, and *k*, one byte of key **output**: The application of AddRoundKey and SubBytes on *t*

 $\begin{array}{ll} 1 & m \leftarrow_{\mathcal{R}} \mathbb{F}_{2}^{n}, m' \leftarrow_{\mathcal{R}} \mathbb{F}_{2}^{n} \ // \ \text{Draw of random input and output masks} \\ 2 & \varphi \leftarrow_{\mathcal{R}} \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n} \ // \ \text{Draw of random permutation of } \mathbb{F}_{2}^{n} \\ 3 & \text{for } \varphi(\omega) \in \{\varphi(0), \varphi(1), \dots, \varphi(2^{n}-1)\} & \text{do } // \ \text{S-box masking} \\ 4 & | & z \leftarrow \varphi(\omega) \oplus m \ // \ \text{Masked input} \\ 5 & | & z' \leftarrow S[\varphi(\omega)] \oplus m' \ // \ \text{Masked output} \\ 6 & | & S'[z] = z' \ // \ \text{Creating the masked S-box entry} \\ 7 & \text{end} \\ 8 & t \leftarrow t \oplus m \ // \ \text{Plaintext masking} \end{array}$

- 9 $t \leftarrow t \oplus k$ // Masked AddRoundKey
- 10 $t \leftarrow S'[t]$ // Masked SubBytes
- 11 $t \leftarrow t \oplus m'$ // Demasking
- 12 return t

Make the index of the loop unknown, use some random permutation φ .

Protected Table Recomputation Implementation Bi-Variate Attacks Multi-Variate Attacks

Leakages

input : *t*, one byte of plaintext, and *k*, one byte of key **output**: The application of AddRoundKey and SubBytes on *t*

 $m \leftarrow_{\mathcal{R}} \mathbb{F}_{2}^{n}, m' \leftarrow_{\mathcal{R}} \mathbb{F}_{2}^{n} //$ Draw of random input and output masks $\varphi \leftarrow_{\mathcal{R}} \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n} //$ Draw of random permutation of \mathbb{F}_{2}^{n} 3 for $\varphi(\omega) \in \{\varphi(0), \varphi(1), \dots, \varphi(2^{n}-1)\}$ do // S-box masking $\qquad z \leftarrow \varphi(\omega) \oplus m //$ Masked input $\qquad z' \leftarrow S[\varphi(\omega)] \oplus m' //$ Masked output $\qquad S'[z] = z' //$ Creating the masked S-box entry 7 end $t \leftarrow t \oplus m //$ Plaintext masking

9 $t \leftarrow t \oplus k$ // Masked AddRoundKey

10 $t \leftarrow S'[t]$ // Masked SubBytes

11 $t \leftarrow t \oplus m'$ // Demasking

12 return t

Protected Table Recomputation Implementation Bi-Variate Attacks Multi-Variate Attacks

Leakages

input : *t*, one byte of plaintext, and *k*, one byte of key **output**: The application of AddRoundKey and SubBytes on *t*

 $\begin{array}{l|l} 1 & m \leftarrow_{\mathcal{R}} \mathbb{F}_{2}^{n}, m' \leftarrow_{\mathcal{R}} \mathbb{F}_{2}^{n} \ // \ \text{Draw of random input and output masks} \\ 2 & \varphi \leftarrow_{\mathcal{R}} \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n} \ // \ \text{Draw of random permutation of } \mathbb{F}_{2}^{n} \\ 3 & \text{for } \varphi(\omega) \in \{\varphi(0), \varphi(1), \ldots, \varphi(2^{n}-1)\} \quad \text{do } // \ \text{S-box masking} \\ 4 & | & z \leftarrow \varphi(\omega) \oplus m \ // \ \text{Masked input} \\ 5 & | & z' \leftarrow S[\varphi(\omega)] \oplus m' \ // \ \text{Masked output} \\ 6 & | & S'[z] = z' \ // \ \text{Creating the masked S-box entry} \\ 7 & \text{end} \end{array}$

8 $t \leftarrow t \oplus m$ // Plaintext masking

9 $t \leftarrow t \oplus k$ // Masked AddRoundKey

10 $t \leftarrow S'[t]$ // Masked SubBytes

11 $t \leftarrow t \oplus m'$ // Demasking

12 return t

23/30

- second-order Correlation Power Analysis 2O-CPA;
- OPTimal distinguisher OPT;
 - Rounded OPTimal Distinguisher ROPT₂, ROPT₄

Taylor Expansion of Maximum Likelihood Attacks

Protected Table Recomputation Implementation Bi-Variate Attacks Multi-Variate Attacks

Bi-Variate Attacks

Protected Table Recomputation Implementation Bi-Variate Attacks Multi-Variate Attacks

Bi-Variate Attacks

Introduction Protected Table Recomputation Implementation Rounded Optimal Attack Bi-Variate Attacks Case Study Multi-Variate Attacks

Leakages, with Table Recomputation

input : *t*, one byte of plaintext, and *k*, one byte of key **output**: The application of AddRoundKey and SubBytes on *t*

1
$$m \leftarrow_{\mathcal{R}} \mathbb{F}_{2}^{n}, m' \leftarrow_{\mathcal{R}} \mathbb{F}_{2}^{n} //$$
 Draw of random input and output masks
2 $\varphi \leftarrow_{\mathcal{R}} \mathbb{F}_{2}^{n} \to \mathbb{F}_{2}^{n} //$ Draw of random permutation of \mathbb{F}_{2}^{n}
3 for $\varphi(\omega) \in \{\varphi(0), \varphi(1), \dots, \varphi(2^{n}-1)\}$ do // S-box masking
4 $\qquad z \leftarrow \varphi(\omega) \oplus m //$ Masked input
5 $\qquad z' \leftarrow S[\varphi(\omega)] \oplus m' //$ Masked output
6 $\qquad S'[z] = z' //$ Creating the masked S-box entry
7 end
8 $t \leftarrow t \oplus m //$ Plaintext masking

9
$$t \leftarrow t \oplus k / /$$
 Masked AddRoundKey

10
$$t \leftarrow S'[t]$$
 // Masked SubBytes

11
$$t \leftarrow t \oplus m'$$
 // Demasking

12 return t

Introduction Protected Table Recomputation Implementation Rounded Optimal Attack Bi-Variate Attacks Case Study Multi-Variate Attacks

Leakages, with Table Recomputation

input : *t*, one byte of plaintext, and *k*, one byte of key **output**: The application of AddRoundKey and SubBytes on *t*

8
$$t \leftarrow t \oplus m$$
 // Plaintext masking

- 9 $t \leftarrow t \oplus k$ // Masked AddRoundKey
- 10 $t \leftarrow S'[t]$ // Masked SubBytes
- 11 $t \leftarrow t \oplus m'$ // Demasking
- 12 return t

▶ optimal distinguisher NOT computable due to the term 2ⁿ!

Introduction Protected Table Recomputation Implementation Rounded Optimal Attack Bi-Variate Attacks Case Study Multi-Variate Attacks

Leakages, with Table Recomputation

input : *t*, one byte of plaintext, and *k*, one byte of key **output**: The application of AddRoundKey and SubBytes on *t*

8
$$t \leftarrow t \oplus m$$
 // Plaintext masking

- 9 $t \leftarrow t \oplus k$ // Masked AddRoundKey
- 10 $t \leftarrow S'[t]$ // Masked SubBytes
- 11 $t \leftarrow t \oplus m'$ // Demasking
- 12 return t
 - third order attack MVA_{TR} [Bruneau et al., 2015];
 - Rounded Optimal Distinguisher ROPT₃.

Protected Table Recomputation Implementation Bi-Variate Attacks Multi-Variate Attacks

Complexity of the Case Study

Attack	Time (seconds)	Computational Complexity
20-CPA	39	$\mathcal{O}\left(\mathcal{Q} ight)$
MVA _{TR}	130	$\mathcal{O}\left(Q\cdot 2^n\right)$
$ROPT_3$	2495	$\mathcal{O}\left(Q\cdot 2^{2n}\right)$
OPT_{2O}	9473	$\mathcal{O}\left(Q\cdot 2^{n'}\right)$
ΟΡΤ	Not computable	$\mathcal{O}\left(Q\cdot 2^n\cdot 2^n!\cdot \left(2^{n+1}+2\right)\right)$

The time of execution have been computed on a Intel Xeon X5660.

Protected Table Recomputation Implementation Bi-Variate Attacks Multi-Variate Attacks

Protected Table Recomputation Implementation Bi-Variate Attacks Multi-Variate Attacks

$(2^{n+1}+2)$ -Variate Attacks on Shuffled Table Recomputation

Figure: Number of traces to reach 80% of success

Protected Table Recomputation Implementation Bi-Variate Attacks Multi-Variate Attacks

Conclusion

Results

We have presented a practical, truncated version of the theoretical, optimal distinguisher:

- becomes efficient;
- remains effective.

Perspective

How to quantify the accuracy of the approximation?

Protected Table Recomputation Implementation Bi-Variate Attacks Multi-Variate Attacks

Conclusion

Results

We have presented a practical, truncated version of the theoretical, optimal distinguisher:

- becomes efficient;
- remains effective.

Perspective

How to choose the degree of the Taylor Expansion?

Thank you for your attention.

30/30

December 2016

Taylor Expansion of Maximum Likelihood Attacks

- [Blömer et al., 2004] Blömer, J., Guajardo, J., and Krummel, V. (2004). Provably Secure Masking of AES.
 - In Handschuh, H. and Hasan, M. A., editors, *Selected Areas in Cryptography*, volume 3357 of *Lecture Notes in Computer Science*, pages 69–83. Springer.

[Bruneau et al., 2014] Bruneau, N., Guilley, S., Heuser, A., and Rioul, O. (2014).

Masks Will Fall Off: Higher-Order Optimal Distinguishers.

- In ASIACRYPT, volume 8874 of LNCS, pages 344-365. Springer.
- P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART II.

[Bruneau et al., 2015] Bruneau, N., Guilley, S., Najm, Z., and Teglia, Y. (2015).

Multi-variate high-order attacks of shuffled tables recomputation.

In Güneysu, T. and Handschuh, H., editors, *Cryptographic Hardware and Embedded Systems - CHES 2015 - 17th International Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings*, volume 9293 of *Lecture Notes in Computer Science*, pages 475–494. Springer.

[Chari et al., 1999] Chari, S., Jutla, C. S., Rao, J. R., and Rohatgi, P. (1999).
 Towards Sound Approaches to Counteract Power-Analysis Attacks.
 In *CRYPTO*, volume 1666 of *LNCS*. Springer.
 Santa Barbara, CA, USA. ISBN: 3-540-66347-9.

[Chari et al., 2002] Chari, S., Rao, J. R., and Rohatgi, P. (2002).
Template Attacks.
In *CHES*, volume 2523 of *LNCS*, pages 13–28. Springer.
San Francisco Bay (Redwood City), USA.

[Coron, 2014] Coron, J.-S. (2014).

Higher Order Masking of Look-Up Tables.

In Nguyen, P. Q. and Oswald, E., editors, *EUROCRYPT*, volume 8441 of *Lecture Notes in Computer Science*, pages 441–458. Springer.

[Pan et al., 2009] Pan, J., den Hartog, J. I., and Lu, J. (2009).

You cannot hide behind the mask: Power analysis on a provably secure S-box implementation.

In Youm, H. Y. and Yung, M., editors, *Information Security Applications*, 10th International Workshop, WISA 2009, Busan, Korea, August 25-27, 2009, Revised Selected Papers, volume 5932 of Lecture Notes in Computer Science, pages 178–192. Springer.

[Prouff and Rivain, 2007] Prouff, E. and Rivain, M. (2007).

A Generic Method for Secure SBox Implementation.

In Kim, S., Yung, M., and Lee, H.-W., editors, *WISA*, volume 4867 of *Lecture Notes in Computer Science*, pages 227–244. Springer.

