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Side-Channel Analysis on Embedded Systems

moments: µ, σ, etc.
distributions:
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- for many possible keys
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Preprocessing:
- filtering
- denoising w/ wavelets
- time/freq. analysis
- dimensionality
reduction (PCA, LDA)

? ? ? ?
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(Ω− 1)th-Order Masking: Principle

Aim

The sensitive variable Z is randomly split into Ω shares:
⇒ need random masks Mi , 0 < i < Ω

Z

Z ⊥ M1 ⊥ ... ⊥ MΩ−1 M1
. . . MΩ−1

Consequence

Increases the minimum key-dependent statistical moment.
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Shuffling: Principle

Aim

Randomize the order of execution
⇒ need a random permutation π

Z1

Z2 Z3 Z4

Consequences

The attacks are applied on the sum of the variables ⇒ increases
the algorithmic noise.
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Protection Parameters

The security level of the protections depends on these parameters:

Masking

I Ω: the number of shares (Ω− 1 masks);

I O: the order (i.e. the minimal key-dependent statistical
moment).

Perfect masking scheme ⇔ O = Ω.

Shuffling

I Π the size of the permutation.
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Template Attacks

Template attacks are the most powerful in a information-theoretic
sense [Chari et al., 2002].

Offline Profiling

The leakage model is learned:

I non-parametric methods (e.g. histogram, kernel methods...);

I parametric methods (e.g. mixture models).

Online Attack

Recover the key using the models by applying a maximum
likelihood (ML) attack.
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Parametric or Non-Parametric ?

Parametric

The only random part is the noise with known distribution.

I easy to estimate;

I shuffle and mask are known;

I many templates are learned.

Non-Parametric

Shuffle and masks are part of the noise.

I can be hard to estimate ⇒ curse of dimensionality;

I shuffle and mask are unknown.
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Notations for the Online attack

The attacks are applied on:

I Q queries (i.e. the traces).

I D dimension (i.e. the number of leakage samples);

A leakage measurement is X = y(t, k∗,R) + N where:

I y(t, k∗,R) is the deterministic part of the model;

I the secret key k∗ and the plaintext t are n-bit words;

I R is the random countermeasure;

I N is a random Gaussian noise of variance σ2.
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Maximum Likelihood Attacks

Theorem (Maximum Likelihood [Bruneau et al., 2014])

When the model is known the optimal distinguisher (OPT)
consists in maximizing the sum over all traces q = 1, . . . ,Q of the
log-likelihood:

LL =
Q∑

q=1

logE exp
−‖x (q) − y(t(q), k ,R)‖2

2σ2
,

where expectation E is applied to the random variable R ∈ R
and ‖ · ‖ is the Euclidean norm on RD .

For convenience we let γ = 1
2σ2 be the SNR parameter.
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Complexity in presence of Masking and
Shuffling

O
(
Q · D · (2n)Ω−1 · Π!

)
I number of traces

I dimension of the attack

I number of possible share values

I number of possible permutations

Not computable for large Π !
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Truncated Taylor Expansion
Complexity

Taylor Expansion of Optimal Attacks in
Gaussian Noise

The optimal attack consists in maximizing the sum over all traces
q = 1, . . . ,Q of the log-likelihood:

LL =
Q∑

q=1

logE exp
−‖x (q) − y(t(q), k ,R)‖2

2σ2
.

It can be rewritten using the cumulant generating function:

LL =
Q∑

q=1

+∞∑
`=1

κ
(q)
`

`!
(−γ)` ,

where κ
(q)
` is the `th-order cumulant of ‖x (q) − y(t(q), k ,R)‖2.
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High order Cumulants

The `th-order cumulant of ‖x − y(t, k ,R)‖2 is given by:

κ` = µ` −
`−1∑
`′=1

(
`− 1

`′ − 1

)
κ`′µ`−`′ (` ≥ 1),

where µ` is the corresponding moment:

µ` = ER

(
‖x − y(t, k ,R)‖2`

)
.
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Rounded Optimal Attack

Rounded Optimal Attack (ROPTL)

The rounded optimal Lth-degree attack consists in maximizing the
sum over all traces of the Lth-order Taylor expansion LLL in the
SNR of the log-likelihood :

LLL =
Q∑

q=1

L∑
`=1

(−1)`κ
(q)
`

γ`

`!
,

and we have
LL = LLL + o(γL) .
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Complexity Gain

I number of possible share values

I number of traces

O
(

Q · L ·
(D+L−1

L

)
· 2(Ω−1)n ·

( Π
min(dΠ

2 e,L)
) )

I Factorial terms
I dimension of the attack
I degree of the Taylor Expansion
I size of the permutation

Reduces to small constants when L� D
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Implementation of Masking Schemes

In masking schemes, while the implementation of the linear parts is
obvious, that of the non linear parts is more difficult.

I algebraic methods [Blömer et al., 2004];

I global look-up table method [Prouff and Rivain, 2007];

I table recomputation methods which precompute a masked
S-box stored in a table [Chari et al., 1999].

In [Coron, 2014] a table recomputation scheme secure at order
Ω− 1 was presented.

20/30 December 2016 Taylor Expansion of Maximum Likelihood Attacks
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Table Recomputation Algorithm

input : t, one byte of plaintext, and k, one byte of key
output: The application of AddRoundKey and SubBytes on t, i.e., S(t ⊕ k)

1 m←R Fn
2, m′ ←R Fn

2 // Draw of random input and output masks

2 for ω ∈ {0, 1, . . . , 2n − 1} do // Sbox masking

3 z ← ω ⊕m // Masked input

4 z ′ ← S[ω]⊕m′ // Masked output

5 S ′[z]← z ′ // Creating the masked Sbox entry

6 end
7 t ← t ⊕m // Plaintext masking

8 t ← t ⊕ k // Masked AddRoundKey

9 t ← S ′[t] // Masked SubBytes

10 t ← t ⊕m′ // Demasking

11 return t

I usual 2-variate 2nd-order attack;
I 2-stage CPA attack [Pan et al., 2009];
I improved (2n + 1)-variate 2nd-order attack on the

input [Bruneau et al., 2014].
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Introduction
Rounded Optimal Attack

Case Study

Protected Table Recomputation Implementation
Bi-Variate Attacks
Multi-Variate Attacks

Protected Table Recomputation Algorithm

input : t, one byte of plaintext, and k, one byte of key
output: The application of AddRoundKey and SubBytes on t

1 m←R Fn
2, m′ ←R Fn

2 // Draw of random input and output masks

2 ϕ←R Fn
2 → Fn

2 // Draw of random permutation of Fn
2

3 for ϕ(ω) ∈ {ϕ(0), ϕ(1), . . . , ϕ(2n − 1)} do // S-box masking

4 z ← ϕ(ω)⊕m // Masked input

5 z ′ ← S[ϕ(ω)]⊕m′ // Masked output

6 S ′[z] = z ′ // Creating the masked S-box entry

7 end

8 t ← t ⊕ m // Plaintext masking

9 t ← t ⊕ k // Masked AddRoundKey

10 t ← S ′[t] // Masked SubBytes

11 t ← t ⊕m′ // Demasking

12 return t

Make the index of the loop unknown, use some random
permutation ϕ.

22/30 December 2016 Taylor Expansion of Maximum Likelihood Attacks
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Leakages

input : t, one byte of plaintext, and k, one byte of key
output: The application of AddRoundKey and SubBytes on t

1 m←R Fn
2, m′ ←R Fn

2 // Draw of random input and output masks

2 ϕ←R Fn
2 → Fn

2 // Draw of random permutation of Fn
2

3 for ϕ(ω) ∈ {ϕ(0), ϕ(1), . . . , ϕ(2n − 1)} do // S-box masking

4 z ← ϕ(ω)⊕m // Masked input

5 z ′ ← S[ϕ(ω)]⊕m′ // Masked output

6 S ′[z] = z ′ // Creating the masked S-box entry

7 end

8 t ← t ⊕ m // Plaintext masking

9 t ← t ⊕ k // Masked AddRoundKey

10 t ← S ′[t] // Masked SubBytes

11 t ← t ⊕m′ // Demasking

12 return t

I second-order Correlation Power Analysis 2O-CPA;
I OPTimal distinguisher OPT;

I Rounded OPTimal Distinguisher ROPT2, ROPT4
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Leakages
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I second-order Correlation Power Analysis 2O-CPA;
I OPTimal distinguisher OPT;

I Rounded OPTimal Distinguisher ROPT2, ROPT4
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Bi-Variate Attacks
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Leakages, with Table Recomputation
input : t, one byte of plaintext, and k, one byte of key
output: The application of AddRoundKey and SubBytes on t

1 m←R Fn
2, m′ ←R Fn

2 // Draw of random input and output masks

2 ϕ←R Fn
2 → Fn

2 // Draw of random permutation of Fn
2

3 for ϕ(ω) ∈ {ϕ(0), ϕ(1), . . . , ϕ(2n − 1)} do // S-box masking

4 z ← ϕ(ω)⊕m // Masked input

5 z ′ ← S[ ϕ(ω) ]⊕m′ // Masked output

6 S ′[z] = z ′ // Creating the masked S-box entry

7 end

8 t ← t ⊕ m // Plaintext masking

9 t ← t ⊕ k // Masked AddRoundKey

10 t ← S ′[t] // Masked SubBytes

11 t ← t ⊕m′ // Demasking

12 return t

I third order attack MVATR [Bruneau et al., 2015];
I Rounded Optimal Distinguisher ROPT3.
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Leakages, with Table Recomputation
input : t, one byte of plaintext, and k, one byte of key
output: The application of AddRoundKey and SubBytes on t

1 m←R Fn
2, m′ ←R Fn

2 // Draw of random input and output masks

2 ϕ←R Fn
2 → Fn

2 // Draw of random permutation of Fn
2

3 for ϕ(ω) ∈ {ϕ(0), ϕ(1), . . . , ϕ(2n − 1)} do // S-box masking

4 z ← ϕ(ω)⊕m // Masked input

5 z ′ ← S[ ϕ(ω) ]⊕m′ // Masked output

6 S ′[z] = z ′ // Creating the masked S-box entry

7 end

8 t ← t ⊕ m // Plaintext masking

9 t ← t ⊕ k // Masked AddRoundKey

10 t ← S ′[t] // Masked SubBytes

11 t ← t ⊕m′ // Demasking

12 return t

I optimal distinguisher NOT computable due to the term 2n!

I third order attack MVATR [Bruneau et al., 2015];
I Rounded Optimal Distinguisher ROPT3.
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Leakages, with Table Recomputation
input : t, one byte of plaintext, and k, one byte of key
output: The application of AddRoundKey and SubBytes on t

1 m←R Fn
2, m′ ←R Fn

2 // Draw of random input and output masks

2 ϕ←R Fn
2 → Fn

2 // Draw of random permutation of Fn
2

3 for ϕ(ω) ∈ {ϕ(0), ϕ(1), . . . , ϕ(2n − 1)} do // S-box masking

4 z ← ϕ(ω)⊕m // Masked input

5 z ′ ← S[ ϕ(ω) ]⊕m′ // Masked output

6 S ′[z] = z ′ // Creating the masked S-box entry

7 end

8 t ← t ⊕ m // Plaintext masking

9 t ← t ⊕ k // Masked AddRoundKey

10 t ← S ′[t] // Masked SubBytes

11 t ← t ⊕m′ // Demasking

12 return t

I third order attack MVATR [Bruneau et al., 2015];
I Rounded Optimal Distinguisher ROPT3.
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Complexity of the Case Study

Attack Time (seconds) Computational Complexity

2O-CPA 39 O (Q)
MVATR 130 O (Q · 2n)
ROPT3 2495 O

(
Q · 22n

)
OPT2O 9473 O (Q · 2n)
OPT Not computable O

(
Q · 2n · 2n! ·

(
2n+1 + 2

))
The time of execution have been computed on a Intel Xeon X5660.
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2n+1 + 2
)
-Variate Attacks on Shuffled Table
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Protected Table Recomputation Implementation
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Protected Table Recomputation Implementation
Bi-Variate Attacks
Multi-Variate Attacks(

2n+1 + 2
)
-Variate Attacks on Shuffled Table
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28/30 December 2016 Taylor Expansion of Maximum Likelihood Attacks



Introduction
Rounded Optimal Attack

Case Study
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Multi-Variate Attacks(

2n+1 + 2
)
-Variate Attacks on Shuffled Table
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Figure: Number of traces to reach 80% of success
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Conclusion

Results

We have presented a practical, truncated version of the theoretical,
optimal distinguisher:

I becomes efficient;

I remains effective.

Perspective

How to quantify the accuracy of the approximation?

30/30 December 2016 Taylor Expansion of Maximum Likelihood Attacks



Introduction
Rounded Optimal Attack

Case Study

Protected Table Recomputation Implementation
Bi-Variate Attacks
Multi-Variate Attacks

Conclusion

Results

We have presented a practical, truncated version of the theoretical,
optimal distinguisher:

I becomes efficient;

I remains effective.

Perspective

How to choose the degree of the Taylor Expansion?
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Thank you for your attention.
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