Structure Preserving Smooth Projective Hashing

Olivier Blazy, Céline Chevalier

im 4

UNIVE

'RSITE PARIS II
PANTHEON-ASSAS

0. Blazy (Xlim)

(SP)2H

1/28

@ Global Framework

GER W

@ Global Framework

© Cryptographic Tools

GER W

@ Global Framework
© Cryptographic Tools

© Structure-Preserving SPHF

GER W

@ Global Framework
© Cryptographic Tools

© Structure-Preserving SPHF

@ Applications

GER W

@ Global Framework
@ Motivation

GER Sy

Conditional Actions

Oblivious Transfer
Database User
C(line)

DB|line]

~» The User learns the value of line but nothing else
~» The Database learns nothing

GER oy

Conditional Actions

Password Authenticated Key Exchange
Bob Alice

f(pwa)

f(pWBa fA)

~» The Users obtain the same key iff their passwords match
~» An Adversary learns nothing

GER oy

UC Requirements for Adaptive Corruptions

o First flow should be extractable

GER Ay

UC Requirements for Adaptive Corruptions

o First flow should be extractable

@ First flow should be equivocable

GER Ay

UC Requirements for Adaptive Corruptions

@ First flow should be extractable
@ First flow should be equivocable

@ Memory should be adapted accordingly

GER Ay

UC Requirements for Adaptive Corruptions

@ First flow should be extractable
@ First flow should be equivocable

@ Memory should be adapted accordingly

Memory as a scalar J

No real trapdoor possible ~» Partial Erasure is the only way

GER Ay

UC Requirements for Adaptive Corruptions

o First flow should be extractable
@ First flow should be equivocable
@ Memory should be adapted accordingly

Memory as a scalar J

No real trapdoor possible ~» Partial Erasure is the only way

Memory as a group element
Allows extra trapdoor J

GER Ay

© Cryptographic Tools
@ Encryption Scheme
@ Smooth Projective Hash Function

GER oy

Definition (Encryption Scheme)
& = (Setup, KeyGen, Encrypt, Decrypt):
@ Setup(R): param;
o KeyGen(param): public encryption key pk, private decryption key dk;
@ Encrypt(pk, m; r): encrypts m € M in c using pk;
o Decrypt(dk, ¢): decrypts ¢ under dk.

Indistinguishability under Chosen Ciphertext Attack

GER Y

Definition (Smooth Projective Hash Functions) [CS02]

Let {H} be a family of functions:
@ X, domain of these functions
@ L, subset (a language) of this domain
such that, for any point x in L, H(x) can be computed by using
o either a secret hashing key hk: H(x) = Hash, (hk; x);
@ or a public projected key hp: H'(x) = ProjHash, (hp; x, w)

Public mapping hk — hp = ProjKG; (hk, x)

GER Y

Properties

For any x € X, H(x) = Hash(hk; x)
For any x € L, H(x) = ProjHash, (hp; x,w) w witness that x € L

GER TV

Properties

For any x € X, H(x) = Hash(hk; x)
For any x € L, H(x) = ProjHash, (hp; x,w) w witness that x € L

Smoothness
For any x & L, H(x) and hp are independent J

GER TV

Properties

For any x € X, H(x) = Hash(hk; x)
For any x € L, H(x) = ProjHash, (hp; x,w) w witness that x € L

Smoothness

For any x & L, H(x) and hp are independent J
Pseudo-Randomness

For any x € L, H(x) is pseudo-random, without a witness w J

GER TV

© Structure-Preserving SPHF

GER E

Definition (Structure Preserving Smooth Projective Hash Functions)
o X =Gk LCGk

such that, for any point x in L, H(x) can be computed as:
o H(x) = Hash(hk;x) € Gr;
e H’'(x) = ProjHash, (hp; x, w)

GER v

Definition (Structure Preserving Smooth Projective Hash Functions)
o X =Gk LC Gk

such that, for any point x in L, H(x) can be computed as:
o H(x) = Hash(hk;x) € Gr;
e H’'(x) = ProjHash, (hp; x, w)

v

hp, x, w are group elements

GER v

Why?

Witnesses can now be Group Elements
This means, compatible with Groth Sahai Proofs (QA-NIZK, ...)

GER A

Why?

Witnesses can now be Group Elements
This means, compatible with Groth Sahai Proofs (QA-NIZK, ...)

Witnesses can now have trapdoors

GER A

Retro-Compatibilty

| SPHF SP-SPHF
Word u [w e T (u)]s [w O T(u)]1
Witness w w A=[fOw]
hk A A
= [v(u)lx [[(u) © Al [M(u) © Al
Hash(hk, u) [©(u) ® A]1 [fee(u) e A]r
ProjHash(hp,u,w) | [w ®~y(u)lx [A ©~(u)lr

(SP)2H

14 / 25

| SPHF SP-SPHF
DH hl’7 gr hl’7 gr
Witness w r g5
hk A A,
h/\gp h/\g;z
Hash(hk, u) (h) (&) e((h)*(e")" &2)
ProjHash(hp, u, w) ' e(hp,)

Figure: Example of conversion of classical SPHF into SP-SPHF

(SP)2H 15 / 25

© Applications
@ Generic Constructions
o SPHF-friendly UC Commitment
o Efficiency
e MDDH

GER A

Oblivious Transfer [Rab81]

A user U wants to access a line £ in a database D composed of t of them:
@ U learns nothing more than the value of the line ¢

@ D does not learn which line was accessed by U

GER s

Oblivious Transfer [Rab81]

A user U wants to access a line £ in a database D composed of t of them:
@ U learns nothing more than the value of the line ¢
@ D does not learn which line was accessed by U

Correctness: if U request a single line, he learns it

GER s

Oblivious Transfer [Rab81]

A user U wants to access a line £ in a database D composed of t of them:
@ U learns nothing more than the value of the line ¢
@ D does not learn which line was accessed by U

Correctness: if U request a single line, he learns it

Security Notions

@ Oblivious: D does not learn which line was accessed ;

@ Semantic Security: U does not learn any information about the other lines.

GER s

Generic 1-out-of-t Oblivious Transfer (Simplified)

o User U picks ¢:
Computes C = Encrypt(¥; s) with a UC commit SPHF friendly (d being the
decommit information). He sends C and keeps d while erasing the rest.

GER A

Generic 1-out-of-t Oblivious Transfer (Simplified)

o User U picks ¢:
Computes C = Encrypt(¥; s) with a UC commit SPHF friendly (d being the
decommit information). He sends C and keeps d while erasing the rest.

o For each line L;, server S computes hk;, hp;, and H; = Hash,(hk;,C),

M; = H; @ L; and sends M;, hp;.

GER A

Generic 1-out-of-t Oblivious Transfer (Simplified)

@ User U picks ¢:
Computes C = Encrypt(¥; s) with a UC commit SPHF friendly (d being the
decommit information). He sends C and keeps d while erasing the rest.

o For each line L;, server S computes hk;, hp;, and H; = Hash,(hk;,C),
M; = H; @ L; and sends M;, hp;.

o For the line ¢, user computes H; = ProjHash, (hp¢,C, d), and then
Ly=M;® H,

GER A

Generic Password Authenticated Key Exchange

@ Each user U; computes C; = Encrypt(pw;; s;) with a UC commitment SPHF
friendly, and d; the decommit information.
He computes hp;, hk; for the language of valid passwords.
He sends C;, hp; and keeps d;, hk; while erasing the rest.

GER WA

Generic Password Authenticated Key Exchange

@ Each user U; computes C; = Encrypt(pw;; s;) with a UC commitment SPHF
friendly, and d; the decommit information.
He computes hp;, hk; for the language of valid passwords.
He sends C;, hp; and keeps d;, hk; while erasing the rest.

@ Receiving Cj, hpj, compute H! - H; = ProjHash(hp;, d;) - Hash(hk;, C;)

GER WA

Generic Anonymous Credential-Based Message Transmission

Credential Use by User i:
© UC commits to his credential in C, and keeps his decommit info d

@ Stores d, sends C and erases the rest

Database input M with policy P:
© Computes hkp & HashKG(Lp), hpp < ProjKG(hkp, Lp),
Kp +— HaSh(hkp, (,CP,C)), and Np «+— Kpd M
@ Server erases everything except (hpp, Np) and sends them
Data recovery:
Upon receiving (hpp, Np), User computes
K < ProjHash(hpp, (Lp,C),d) and gets M < K @ Np.

GER Y

One Round UC Commitment [FLM11]

High Level

@ Do a Linear Cramer-Shoup Encryption of M with randomness r,s ~» C

GER Y

One Round UC Commitment [FLM11]

High Level

@ Do a Linear Cramer-Shoup Encryption of M with randomness r,s ~» C
@ Do a Groth Sahai proof of knowledge of r,s ~~ d

GER Y

Comparison with existing SXDH UC-secure OT schemes

Flow Communication Complexity 1-out-of
[CKWZ13] 4 260G+ 727, 2
[ABBCP13] 3 (m+8logm) Gy 4 logm G, + 1 Z, m
Us 3 4G+ (4+4m) Go+ mZ, m
Us 3 4G1+12G2+217Z, 2

GER Y

Comparison with UC-secure PAKE where |password| = m

Adaptive One-round Communication complexity =~ Assumption

[ACP09] v X 2x(@2m+2mRA) <G + OTS _ DDH
[KV11] X v ~2x70G DLIN
[BBCPV13] X v 2% (6 Gy + 5 Gp) SXDH
[ABBCP13] v v 2 % (10m Gy + m Gy) SXDH
[JR15] v v 4Gy + 4Gy SXDH
Us v Ve 2 X (4 G1+5 Gz) SXDH

GER Y

k-MDDH abstraction [EHKRV13]

o Allows to abstract every Diffie Hellman assumptions

@ Given A, z decides whether there exists s such that As =z

GER Y

k-MDDH abstraction [EHKRV13]

o Allows to abstract every Diffie Hellman assumptions

@ Given A, z decides whether there exists s such that As =z

A framework for everything
Compatible with linear constructions (CCA2, FLM-like, SPHF, and so SPSPHF) J

GER Y

To sum up

v Generic Transformation (keeps security, extra property)

GER YA

To sum up

v Generic Transformation (keeps security, extra property)

v Allows to use NIZK as witnesses

GER YA

To sum up

v Generic Transformation (keeps security, extra property)
v Allows to use NIZK as witnesses

v Leads to efficient protocols by using existing results

GER YA

To sum up

v Generic Transformation (keeps security, extra property)
v Allows to use NIZK as witnesses

v Leads to efficient protocols by using existing results

v All constructions can be transposed to MDDH

GER YA

	Global Framework
	Motivation

	Cryptographic Tools
	Encryption Scheme
	Smooth Projective Hash Function

	Structure-Preserving SPHF
	Applications
	Generic Constructions
	SPHF-friendly UC Commitment
	Efficiency
	MDDH

