International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Nicholas Spooner

Publications

Year
Venue
Title
2024
TCC
Untangling the Security of Kilian's Protocol: Upper and Lower Bounds
Sigma protocols are elegant cryptographic proofs that have become a cornerstone of modern cryptography. A notable example is Schnorr's protocol, a zero-knowledge proof-of-knowledge of a discrete logarithm. Despite extensive research, the security of Schnorr's protocol in the standard model is not fully understood. In this paper we study \emph{Kilian's protocol}, an influential public-coin interactive protocol that, while not a sigma protocol, shares striking similarities with sigma protocols. The first example of a succinct argument, Kilian's protocol is proved secure via \emph{rewinding}, the same idea used to prove sigma protocols secure. In this paper we show how, similar to Schnorr's protocol, a precise understanding of the security of Kilian's protocol remains elusive. We contribute new insights via upper bounds and lower bounds. \begin{itemize} \item \emph{Upper bounds.} We establish the tightest known bounds on the security of Kilian's protocol in the standard model, via strict-time reductions and via expected-time reductions. Prior analyses are strict-time reductions that incur large overheads or assume restrictive properties of the PCP underlying Kilian's protocol. \item \emph{Lower bounds.} We prove that significantly improving on the bounds that we establish for Kilian's protocol would imply improving the security analysis of Schnorr's protocol beyond the current state-of-the-art (an open problem). This partly explains the difficulties in obtaining tight bounds for Kilian's protocol. \end{itemize}
2023
EUROCRYPT
Speed-Stacking: Fast Sublinear Zero-Knowledge Proofs for Disjunctions
Building on recent disjunctive compilers for zero-knowledge (e.g., Goel et al. [EUROCRYPT'22]), we propose a new compiler that, when applied to sublinear-sized proofs, can result in sublinear-size disjunctive zero-knowledge with sublinear proving times (without meaningfully increasing proof sizes). Our key observation is that simulation in sublinear-size zero-knowledge proof systems can be much faster (both concretely and asymptotically) than the honest prover. We study applying our compiler to two classes of $O(\log n)$-round protocols: interactive oracle proofs, specifically Aurora [EUROCRYPT'19] and Fractal [EUROCRYPT'20], and folding arguments, specifically Compressed $\Sigma$-protocols [CRYPTO'20, CRYPTO'21] and Bulletproofs [S\&P'18]. This study validates that the compiler can lead to significant savings. For example, applying our compiler to Fractal enables us to prove a disjunction of $\ell$ clauses, each of size $N$, with only $O((N+\ell) \cdot \text{polylog}(N))$ computation, versus $O(\ell N \cdot \text{polylog}(N))$ when proving the disjunction directly. We also find that our compiler offers a new lens through which to understand zero-knowledge proofs, evidenced by multiple examples of protocols with the same ``standalone'' complexity that each behave very differently when stacked.
2023
EUROCRYPT
Proof-Carrying Data From Arithmetized Random Oracles
Proof-carrying data (PCD) is a powerful cryptographic primitive that allows mutually distrustful parties to perform distributed computation in an efficiently verifiable manner. Known constructions of PCD are obtained by recursively-composing SNARKs or related primitives. SNARKs with desirable properties such as transparent setup are constructed in the random oracle model. However, using such SNARKs to construct PCD requires heuristically instantiating the oracle and using it in a non-black-box way. Chen, Chiesa and Spooner [Eurocrypt'22] constructed SNARKs in the low-degree random oracle model, circumventing this issue, but instantiating their model in the real world appears difficult. In this paper, we introduce a new model: the arithmetized random oracle model (AROM). We provide a plausible standard-model (software-only) instantiation of the AROM, and we construct PCD in the AROM, given only a standard-model collision-resistant hash function. Furthermore, our PCD construction is for arbitrary-depth compliance predicates. We obtain our PCD construction by showing how to construct SNARKs in the AROM for computations that query the oracle, given an accumulation scheme for oracle queries in the AROM. We then construct such an accumulation scheme for the AROM. To prove the security of cryptographic constructs in the AROM, we give a non-trivial and efficient "lazy sampling" algorithm (a "stateful emulator") for the ARO up to some error. We obtain this construction by developing a toolkit for analyzing cryptographic constructions in the AROM, which uses algebraic query complexity techniques and the combinatorial nullstellensatz.
2022
TCC
Quantum Rewinding for Many-Round Protocols
We investigate the security of succinct arguments against quantum adversaries. Our main result is a proof of knowledge-soundness in the post-quantum setting for a class of multi-round interactive protocols, including those based on the recursive folding technique of Bulletproofs. To prove this result, we devise a new quantum rewinding strategy, the first that allows for rewinding across many rounds. This technique applies to any protocol satisfying natural multi-round generalizations of special soundness and collapsing. For our main result, we show that recent Bulletproofs-like protocols based on lattices satisfy these properties, and are hence sound against quantum adversaries.
2022
EUROCRYPT
On Succinct Non-Interactive Arguments in Relativized Worlds 📺
Megan Chen Alessandro Chiesa Nicholas Spooner
Succinct non-interactive arguments of knowledge (SNARKs) are cryptographic proofs with strong efficiency properties. Applications of SNARKs often involve proving computations that include the SNARK verifier, a technique called recursive composition. Unfortunately, SNARKs with desirable features such as a transparent (public-coin) setup are known only in the random oracle model (ROM). In applications this oracle must be heuristically instantiated and used in a non-black-box way. In this paper we identify a natural oracle model, the low-degree random oracle model, in which there exist transparent SNARKs for all NP computations *relative to this oracle*. Informally, letting $O$ be a low-degree encoding of a random oracle, and assuming the existence of (standard-model) collision-resistant hash functions, there exist SNARKs relative to $O$ for all languages in $NP^{O}$. Such a SNARK can directly prove a computation about its own verifier. To analyze this model, we introduce a more general framework, the *linear code random oracle model* (LCROM). We show how to obtain SNARKs in the LCROM for computations that query the oracle, given an *accumulation scheme* for oracle queries. Then we construct such an accumulation scheme for the special case of a low degree random oracle.
2021
CRYPTO
Proof-Carrying Data without Succinct Arguments 📺
Proof-carrying data (PCD) is a powerful cryptographic primitive that enables mutually distrustful parties to perform distributed computations that run indefinitely. Known approaches to construct PCD are based on succinct non-interactive arguments of knowledge (SNARKs) that have a succinct verifier or a succinct accumulation scheme. In this paper we show how to obtain PCD without relying on SNARKs. We construct a PCD scheme given any non-interactive argument of knowledge (e.g., with linear-size arguments) that has a *split accumulation scheme*, which is a weak form of accumulation that we introduce. Moreover, we construct a transparent non-interactive argument of knowledge for R1CS whose split accumulation is verifiable via a (small) *constant number of group and field operations*. Our construction is proved secure in the random oracle model based on the hardness of discrete logarithms, and it leads, via the random oracle heuristic and our result above, to concrete efficiency improvements for PCD. Along the way, we construct a split accumulation scheme for Hadamard products under Pedersen commitments and for a simple polynomial commitment scheme based on Pedersen commitments. Our results are supported by a modular and efficient implementation.
2020
EUROCRYPT
Fractal: Post-Quantum and Transparent Recursive Proofs from Holography 📺
Alessandro Chiesa Dev Ojha Nicholas Spooner
We present a new methodology to efficiently realize recursive composition of succinct non-interactive arguments of knowledge (SNARKs). Prior to this work, the only known methodology relied on pairing-based SNARKs instantiated on cycles of pairing-friendly elliptic curves, an expensive algebraic object. Our methodology does not rely on any special algebraic objects and, moreover, achieves new desirable properties: it is post-quantum and it is transparent (the setup is public coin). We exploit the fact that recursive composition is simpler for SNARKs with preprocessing, and the core of our work is obtaining a preprocessing zkSNARK for rank-1 constraint satisfiability (R1CS) that is post-quantum and transparent. We obtain this latter by establishing a connection between holography and preprocessing in the random oracle model, and then constructing a holographic proof for R1CS. We experimentally validate our methodology, demonstrating feasibility in practice.
2020
TCC
Proof-Carrying Data from Accumulation Schemes 📺
Recursive proof composition has been shown to lead to powerful primitives such as incrementally-verifiable computation (IVC) and proof-carrying data (PCD). All existing approaches to recursive composition take a succinct non-interactive argument of knowledge (SNARK) and use it to prove a statement about its own verifier. This technique requires that the verifier run in time sublinear in the size of the statement it is checking, a strong requirement that restricts the class of SNARKs from which PCD can be built. This in turn restricts the efficiency and security properties of the resulting scheme. Bowe, Grigg, and Hopwood (ePrint 2019/1021) outlined a novel approach to recursive composition, and applied it to a particular SNARK construction which does *not* have a sublinear-time verifier. However, they omit details about this approach and do not prove that it satisfies any security property. Nonetheless, schemes based on their ideas have already been implemented in software. In this work we present a collection of results that establish the theoretical foundations for a generalization of the above approach. We define an *accumulation scheme* for a non-interactive argument, and show that this suffices to construct PCD, even if the argument itself does not have a sublinear-time verifier. Moreover we give constructions of accumulation schemes for SNARKs, which yield PCD schemes with novel efficiency and security features.
2019
EUROCRYPT
Aurora: Transparent Succinct Arguments for R1CS
We design, implement, and evaluate a zero knowledge succinct non-interactive argument (SNARG) for Rank-1 Constraint Satisfaction (R1CS), a widely-deployed NP language undergoing standardization. Our SNARG has a transparent setup, is plausibly post-quantum secure, and uses lightweight cryptography. A proof attesting to the satisfiability of n constraints has size $$O(\log ^2 n)$$O(log2n); it can be produced with $$O(n \log n)$$O(nlogn) field operations and verified with O(n). At 128 bits of security, proofs are less than $${250}\,\mathrm{kB}$$250kB even for several million constraints, more than $$10{\times }$$10× shorter than prior SNARGs with similar features.A key ingredient of our construction is a new Interactive Oracle Proof (IOP) for solving a univariate analogue of the classical sumcheck problem [LFKN92], originally studied for multivariate polynomials. Our protocol verifies the sum of entries of a Reed–Solomon codeword over any subgroup of a field.We also provide $$\texttt {libiop}$$libiop, a library for writing IOP-based arguments, in which a toolchain of transformations enables programmers to write new arguments by writing simple IOP sub-components. We have used this library to specify our construction and prior ones, and plan to open-source it.
2019
TCC
Succinct Arguments in the Quantum Random Oracle Model
Alessandro Chiesa Peter Manohar Nicholas Spooner
Succinct non-interactive arguments (SNARGs) are highly efficient certificates of membership in non-deterministic languages. Constructions of SNARGs in the random oracle model are widely believed to be post-quantum secure, provided the oracle is instantiated with a suitable post-quantum hash function. No formal evidence, however, supports this belief.In this work we provide the first such evidence by proving that the SNARG construction of Micali is unconditionally secure in the quantum random oracle model. We also prove that, analogously to the classical case, the SNARG inherits the zero knowledge and proof of knowledge properties of the PCP underlying the Micali construction. We thus obtain the first zero knowledge SNARG of knowledge (zkSNARK) that is secure in the quantum random oracle model.Our main tool is a new lifting lemma that shows how, for a rich class of oracle games, we can generically deduce security against quantum attackers by bounding a natural classical property of these games. This means that in order to prove our theorem we only need to establish classical properties about the Micali construction. This approach not only lets us prove post-quantum security but also enables us to prove explicit bounds that are tight up to small factors.We additionally use our techniques to prove that SNARGs based on interactive oracle proofs (IOPs) with round-by-round soundness are unconditionally secure in the quantum random oracle model. This result establishes the post-quantum security of many SNARGs of practical interest.
2019
TCC
Linear-Size Constant-Query IOPs for Delegating Computation
We study the problem of delegating computations via interactive proofs that can be probabilistically checked. Known as interactive oracle proofs (IOPs), these proofs extend probabilistically checkable proofs (PCPs) to multi-round protocols, and have received much attention due to their application to constructing cryptographic proofs (such as succinct non-interactive arguments). The relevant complexity measures for IOPs in this context are prover and verifier time, and query complexity.We construct highly efficient IOPs for a rich class of nondeterministic algebraic computations, which includes succinct versions of arithmetic circuit satisfiability and rank-one constraint system (R1CS) satisfiability. For a time-T computation, we obtain prover arithmetic complexity $$O(T \log T)$$ and verifier complexity polylog(T). These IOPs are the first to simultaneously achieve the state of the art in prover complexity, due to [14], and in verifier complexity, due to [7]. We also improve upon the query complexity of both schemes.The efficiency of our prover is a result of our highly optimized proof length; in particular, ours is the first construction that simultaneously achieves linear-size proofs and polylogarithmic-time verification, regardless of query complexity.
2017
TCC
2016
TCC

Program Committees

Crypto 2024
TCC 2023
TCC 2022
TCC 2020