International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Sri Aravinda Krishnan Thyagarajan

Publications

Year
Venue
Title
2024
EUROCRYPT
Foundations of Adaptor Signatures
Paul Gerhart Dominique Schröder Pratik Soni Sri Aravinda Krishnan Thyagarajan
Adaptor signatures extend the functionality of regular signatures through the computation of pre-signatures on messages for statements of NP relations. Pre-signatures are publicly verifiable; they simultaneously hide and commit to a signature of an underlying signature scheme on that message. Anybody possessing a corresponding witness for the statement can adapt the pre-signature to obtain the ``regular'' signature. Adaptor signatures have found numerous applications for conditional payments in blockchain systems, like payment channels~(CCS'20, CCS'21), private coin mixing (CCS'22, SP'23), and oracle-based payments (NDSS'23). In our work, we revisit the state of the security of adaptor signatures and their constructions. In particular, our two main contributions are: - Security Gaps and Definitions: We review the widely-used security model of adaptor signatures due to Aumayr et al. (ASIACRYPT'21), and identify gaps in their definitions that render known protocols for private coin-mixing and oracle-based payments insecure. We give simple counterexamples of adaptor signatures that are secure w.r.t. their definitions, but result in insecure instantiations of these protocols. To fill these gaps, we identify a minimal set of modular definitions that align with these practical applications. - Secure Constructions: Despite their popularity, all known constructions are (1) derived from identification schemes via the Fiat-Shamir transform in the random oracle model or (2) require modifications to the underlying signature verification algorithm, thus making the construction useless in the setting of cryptocurrencies. More concerningly, all known constructions were proven secure w.r.t. the insufficient definitions of Aumayr et al., leaving us with no provably secure adaptor signature scheme to use in applications. Firstly, in this work, we salvage all current applications by proving security of the widely-used Schnorr adaptor signatures under our proposed definitions. We then provide several new constructions, including presenting the first adaptor signature schemes for Camenisch-Lysyanskaya (CL), Boneh-Boyen-Shacham (BBS+), and Waters signatures; all of which are proven secure in the standard model. Our new constructions rely on a new abstraction of digital signatures, called dichotomic signatures, which covers the essential properties we need to build adaptor signatures. Proving the security of all constructions (including identification-based schemes) relies on a novel non-black-box proof technique. Both our digital signature abstraction and the proof technique could be of independent interest to the community.
2022
CRYPTO
Lattice-Based SNARKs: Publicly Verifiable, Preprocessing, and Recursively Composable 📺
A succinct non-interactive argument of knowledge (SNARK) allows a prover to produce a short proof that certifies the veracity of a certain NP-statement. In the last decade, a large body of work has studied candidate constructions that are secure against quantum attackers. Unfortunately, no known candidate matches the efficiency and desirable features of (pre-quantum) constructions based on bilinear pairings. In this work, we make progress on this question. We propose the first lattice-based SNARK that simultaneously satisfies many desirable properties: It (i) is tentatively post-quantum secure, (ii) is publicly-verifiable, (iii) has a logarithmic-time verifier and (iv) has a purely algebraic structure making it amenable to efficient recursive composition. Our construction stems from a general technical toolkit that we develop to translate pairing-based schemes to lattice-based ones. At the heart of our SNARK is a new lattice-based vector commitment (VC) scheme supporting openings to constant-degree multivariate polynomial maps, which is a candidate solution for the open problem of constructing VC schemes with openings to beyond linear functions. However, the security of our constructions is based on a new family of lattice-based computational assumptions which naturally generalises the standard Short Integer Solution (SIS) assumption.
2019
PKC
Efficient Invisible and Unlinkable Sanitizable Signatures
Sanitizable signatures allow designated parties (the sanitizers) to apply arbitrary modifications to some restricted parts of signed messages. A secure scheme should not only be unforgeable, but also protect privacy and hold both the signer and the sanitizer accountable. Two important security properties that are seemingly difficult to achieve simultaneously and efficiently are invisibility and unlinkability. While invisibility ensures that the admissible modifications are hidden from external parties, unlinkability says that sanitized signatures cannot be linked to their sources. Achieving both properties simultaneously is crucial for applications where sensitive personal data is signed with respect to data-dependent admissible modifications. The existence of an efficient construction achieving both properties was recently posed as an open question by Camenisch et al. (PKC’17). In this work, we propose a solution to this problem with a two-step construction. First, we construct (non-accountable) invisible and unlinkable sanitizable signatures from signatures on equivalence classes and other basic primitives. Second, we put forth a generic transformation using verifiable ring signatures to turn any non-accountable sanitizable signature into an accountable one while preserving all other properties. When instantiating in the generic group and random oracle model, the efficiency of our construction is comparable to that of prior constructions, while providing stronger security guarantees.
2019
CRYPTO
Homomorphic Time-Lock Puzzles and Applications 📺
Giulio Malavolta Sri Aravinda Krishnan Thyagarajan
Time-lock puzzles allow one to encrypt messages for the future, by efficiently generating a puzzle with a solution s that remains hidden until time $$\mathcal {T}$$ has elapsed. The solution is required to be concealed from the eyes of any algorithm running in (parallel) time less than $$\mathcal {T}$$. We put forth the concept of homomorphic time-lock puzzles, where one can evaluate functions over puzzles without solving them, i.e., one can manipulate a set of puzzles with solutions $$(s_1, \dots , s_n)$$ to obtain a puzzle that solves to $$f(s_1, \ldots , s_n)$$, for any function f. We propose candidate constructions under concrete cryptographic assumptions for different classes of functions. Then we show how homomorphic time-lock puzzles overcome the limitations of classical time-lock puzzles by proposing new protocols for applications of interest, such as e-voting, multi-party coin flipping, and fair contract signing.