International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Danilo Francati

Publications

Year
Venue
Title
2024
CRYPTO
Advancing Scalability in Decentralized Storage: A Novel Approach to Proof-of-Replication via Polynomial Evaluation
Proof-of-Replication (PoRep) plays a pivotal role in decentralized storage networks, serving as a mechanism to verify that provers consistently store retrievable copies of specific data. While PoRep’s utility is unquestionable, its implementation in large-scale systems, such as Filecoin, has been hindered by scalability challenges. Most existing PoRep schemes, such as Fisch’s (Eurocrypt 2019), face an escalating number of challenges and growing computational overhead as the number of stored files increases. This paper introduces a novel PoRep scheme distinctively tailored for expansive decentralized storage networks. At its core, our approach hinges on polynomial evaluation, diverging from the probabilistic checking prevalent in prior works. Remarkably, our design requires only a single challenge, irrespective of the number of files, ensuring both prover’s and verifier’s run-times remain manageable even as file counts soar. Our approach introduces a paradigm shift in PoRep designs, offering a blueprint for highly scalable and efficient decentralized storage solutions.
2024
JOFC
Multi-key and Multi-input Predicate Encryption (for Conjunctions) from Learning with Errors
<jats:title>Abstract</jats:title><jats:p>We put forward two natural generalizations of predicate encryption (PE), dubbed <jats:italic>multi-key</jats:italic> and <jats:italic>multi-input</jats:italic> PE. More in details, our contributions are threefold.<jats:list list-type="bullet"> <jats:list-item> <jats:p><jats:bold>Definitions.</jats:bold> We formalize security of multi-key PE and multi-input PE following the standard indistinguishability paradigm, and modeling security both against malicious senders (i.e., corruption of encryption keys) and malicious receivers (i.e., collusions).</jats:p> </jats:list-item> <jats:list-item> <jats:p><jats:bold>Constructions.</jats:bold> We construct adaptively secure multi-key and multi-input PE supporting the conjunction of poly-many arbitrary single-input predicates, assuming the sub-exponential hardness of the learning with errors (LWE) problem.</jats:p> </jats:list-item> <jats:list-item> <jats:p><jats:bold>Applications.</jats:bold> We show that multi-key and multi-input PE for expressive enough predicates suffices for interesting cryptographic applications, including non-interactive multi-party computation (NI-MPC) and matchmaking encryption (ME).</jats:p> </jats:list-item> </jats:list> In particular, plugging in our constructions of multi-key and multi-input PE, under the sub-exponential LWE assumption, we obtain the first ME supporting <jats:italic>arbitrary policies</jats:italic> with unbounded collusions, as well as robust (resp. non-robust) NI-MPC for so-called <jats:italic>all-or-nothing</jats:italic> functions satisfying a non-trivial notion of reusability and supporting a constant (resp. polynomial) number of parties. Prior to our work, both of these applications required much heavier tools such as indistinguishability obfuscation or compact functional encryption.</jats:p>
2024
ASIACRYPT
Evolving Secret Sharing Made Short
Danilo Francati Daniele Venturi
Evolving secret sharing (Komargodski, Naor, and Yogev, TCC’16) generalizes the notion of secret sharing to the setting of evolving access structures, in which the share holders are added to the system in an online manner, and where the dealer does not know neither the access structure nor the maximum number of parties in advance. Here, the main difficulty is to distribute shares to the new players without updating the shares of old players; moreover, one would like to minimize the share size as a function of the number of players. In this paper, we initiate a systematic study of evolving secret sharing in the computational setting, where the maximum number of parties is polynomial in the security parameter, but the dealer still does not know this value, neither it knows the access structure in advance. Moreover, the privacy guarantee only holds against computationally bounded adversaries corrupting an unauthorized subset of the players. Our main result is that for many interesting, and practically relevant, evolving access structures (including graphs access structures, DNF and CNF formulas access structures, monotone circuits access structures, and threshold access structures), under standard hardness assumptions, there exist efficient secret sharing schemes with computational privacy and in which the shares are succinct (i.e., much smaller compared to the size of a natural computational representation of the evolving access structure).
2023
PKC
Verifiable Capacity-bound Functions: A New Primitive from Kolmogorov Complexity (Revisiting space-based security in the adaptive setting)
We initiate the study of verifiable capacity-bound function (VCBF). The main VCBF property imposes a strict lower bound on the number of bits read from memory during evaluation (referred to as minimum capacity). No adversary, even with unbounded computational resources, should produce an output without spending this minimum memory capacity. Moreover, a VCBF allows for an efficient public verification process: Given a proof-of-correctness, checking the validity of the output takes significantly fewer memory resources, sublinear in the target minimum capacity. Finally, it achieves soundness, i.e., no computationally bounded adversary can produce a proof that passes verification for a false output. With these properties, we believe a VCBF can be viewed as a “space” analog of a verifiable delay function. We then propose the first VCBF construction relying on evaluating a degree-$d$ polynomial $f$ from $F_p[x]$ at a random point. We leverage ideas from Kolmogorov complexity to prove that sampling $f$ from a large set (i.e., for high-enough d) ensures that evaluation must entail reading a number of bits proportional to the size of its coefficients. Moreover, our construction benefits from existing verifiable polynomial evaluation schemes to realize our efficient verification requirements. In practice, for a field of order $O(2^\lambda)$ our VCBF achieves $O((d + 1)\lambda)$ minimum capacity, whereas verification requires just $O(\lambda)$. The minimum capacity of our VCBF construction holds against adversaries that perform a constant number of random memory accesses during evaluation. This poses the natural question of whether a VCBF with high minimum capacity guarantees exists when dealing with adversaries that perform non-constant (e.g., polynomial) number of random accesses.
2023
PKC
Structure-Preserving Compilers from New Notions of Obfuscations
The dream of software obfuscation is to take programs, as they are, and then generically compile them into obfuscated versions that hide their secret inner workings. In this work we investigate notions of obfuscations weaker than virtual black-box (VBB) but which still allow obfuscating cryptographic primitives preserving their original functionalities as much as possible. In particular we propose two new notions of obfuscations, which we call oracle-differing-input obfuscation (odiO) and oracle-indistinguishability obfuscation (oiO). In a nutshell, odiO is a natural strengthening of differing-input obfuscation (diO) and allows obfuscating programs for which it is hard to find a differing-input when given only oracle access to the programs. An oiO obfuscator allows to obfuscate programs that are hard to distinguish when treated as oracles. We then show applications of these notions, as well as positive and negative results around them. A few highlights include: – Our new notions are weaker than VBB and stronger than diO. – As it is the case for VBB, we show that there exist programs that cannot be obfuscated with odiO or oiO. – Our new notions allow to generically compile several flavours of secret-key primitives (e.g., SKE, MAC, designated verifier NIZK) into their public-key equivalent (e.g., PKE, signatures, publicly verifiable NIZK) while preserving one of the algorithms of the original scheme (function-preserving), or the structure of their outputs (format-preserving).
2023
EUROCRYPT
Multi-key and Multi-input Predicate Encryption from Learning with Errors
We put forward two natural generalizations of predicate encryption (PE), dubbed multi-key and multi-input PE. More in details, our contributions are threefold. – Definitions. We formalize security of multi-key PE and multi-input PE following the standard indistinguishability paradigm, and modeling security both against malicious senders (i.e., corruption of encryption keys) and malicious receivers (i.e., collusions). – Constructions. We construct adaptively secure multi-key and multi-input PE supporting the conjunction of poly-many arbitrary single-input predicates, assuming the sub-exponential hardness of the learning with errors (LWE) problem. – Applications. We show that multi-key and multi-input PE for expressive enough predicates suffices for interesting cryptographic applications, including non-interactive multi-party computation (NI-MPC) and matchmaking encryption (ME). In particular, plugging in our constructions of multi-key and multi-input PE, under the sub-exponential LWE assumption, we obtain the first ME supporting arbitrary policies with unbounded collusions, as well as robust (resp. non-robust) NI-MPC for so-called all-or-nothing functions satisfying a non-trivial notion of reusability and supporting a constant (resp. polynomial) number of parties. Prior to our work, both of these applications required much heavier tools such as indistinguishability obfuscation or compact functional encryption.
2023
ASIACRYPT
Registered (Inner-Product) Functional Encryption
Registered encryption (Garg et al., TCC'18) is an emerging paradigm that tackles the key-escrow problem associated with identity-based encryption by replacing the private-key generator with a much weaker entity known as the key curator. The key curator holds no secret information, and is responsible to: (i) update the master public key whenever a new user registers its own public key to the system; (ii) provide helper decryption keys to the users already registered in the system, in order to still enable them to decrypt after new users join the system. For practical purposes, tasks (i) and (ii) need to be efficient, in the sense that the size of the public parameters, of the master public key, and of the helper decryption keys, as well as the running times for key generation and user registration, and the number of updates, must be small. In this paper, we generalize the notion of registered encryption to the setting of functional encryption (FE). As our main contribution, we show an efficient construction of registered FE for the special case of (attribute hiding) inner-product predicates, built over asymmetric bilinear groups of prime order. Our scheme supports a large attribute universe and is proven secure in the bilinear generic group model. We also implement our scheme and experimentally demonstrate the efficiency requirements of the registered settings. Our second contribution is a feasibility result where we build registered FE for P/poly based on indistinguishability obfuscation and somewhere statistically binding hash functions.
2021
JOFC
Match Me if You Can: Matchmaking Encryption and Its Applications
We introduce a new form of encryption that we name matchmaking encryption (ME). Using ME, sender S and receiver R (each with its own attributes) can both specify policies the other party must satisfy in order for the message to be revealed. The main security guarantee is that of privacy-preserving policy matching: During decryption, nothing is leaked beyond the fact that a match occurred/did not occur. ME opens up new ways of secretly communicating and enables several new applications where both participants can specify fine-grained access policies to encrypted data. For instance, in social matchmaking, S can encrypt a file containing his/her personal details and specify a policy so that the file can be decrypted only by his/her ideal partner. On the other end, a receiver R will be able to decrypt the file only if S corresponds to his/her ideal partner defined through a policy. On the theoretical side, we define security for ME, as well as provide generic frameworks for constructing ME from functional encryption. These constructions need to face the technical challenge of simultaneously checking the policies chosen by S and R, to avoid any leakage. On the practical side, we construct an efficient identity-based scheme for equality policies, with provable security in the random oracle model under the standard BDH assumption. We implement and evaluate our scheme and provide experimental evidence that our construction is practical. We also apply identity-based ME to a concrete use case, in particular for creating an anonymous bulletin board over a Tor network.
2019
CRYPTO
Match Me if You Can: Matchmaking Encryption and Its Applications 📺
We introduce a new form of encryption that we name matchmaking encryption (ME). Using ME, sender S and receiver R (each with its own attributes) can both specify policies the other party must satisfy in order for the message to be revealed. The main security guarantee is that of privacy-preserving policy matching: During decryption nothing is leaked beyond the fact that a match occurred/did not occur.ME opens up new ways of secretly communicating, and enables several new applications where both participants can specify fine-grained access policies to encrypted data. For instance, in social matchmaking, S can encrypt a file containing his/her personal details and specify a policy so that the file can be decrypted only by his/her ideal partner. On the other end, a receiver R will be able to decrypt the file only if S corresponds to his/her ideal partner defined through a policy.On the theoretical side, we define security for ME, as well as provide generic frameworks for constructing ME from functional encryption.These constructions need to face the technical challenge of simultaneously checking the policies chosen by S and R, to avoid any leakage.On the practical side, we construct an efficient identity-based scheme for equality policies, with provable security in the random oracle model under the standard BDH assumption. We implement and evaluate our scheme and provide experimental evidence that our construction is practical. We also apply identity-based ME to a concrete use case, in particular for creating an anonymous bulletin board over a Tor network.