CryptoDB
Tatiana Bradley
Publications
Year
Venue
Title
2020
CRYPTO
Universally Composable Relaxed Password Authenticated Key Exchange
📺
Abstract
Protocols for password authenticated key exchange (PAKE) allow two parties who share only a weak password to agree on a cryptographic key. We revisit the notion of PAKE in the universal composability (UC) framework, and propose a relaxation of the PAKE functionality of Canetti et al. that we call lazy-extraction PAKE (lePAKE). Our relaxation allows the ideal-world adversary to postpone its password guess until after a session is complete. We argue that this relaxed notion still provides meaningful security in the password-only setting. As our main result, we show that several PAKE protocols that were previously only proven secure with respect to a ``game-based'' definition of security can be shown to UC-realize the lePAKE functionality in the random-oracle model. These include SPEKE, SPAKE2, and TBPEKE, the most efficient PAKE schemes currently known.
2019
CRYPTO
Strong Asymmetric PAKE Based on Trapdoor CKEM
📺
Abstract
Password-Authenticated Key Exchange (PAKE) protocols allow two parties that share a password to establish a shared key in a way that is immune to offline attacks. Asymmetric PAKE (aPAKE) [20] adapts this notion to the common client-server setting, where the server stores a one-way hash of the password instead of the password itself, and server compromise allows the adversary to recover the password only via the (inevitable) offline dictionary attack. Most aPAKE protocols, however, allow an attacker to pre-compute a dictionary of hashed passwords, thus instantly learning the password on server compromise. Recently, Jarecki, Krawczyk, and Xu formalized a Universally Composable strong aPAKE (saPAKE) [23], which requires the password hash to be salted so that the dictionary attack can only start after the server compromise leaks the salt and the salted hash. The UC saPAKE protocol shown in [23], called OPAQUE, uses 3 protocol flows, 3–4 exponentiations per party, and relies on the One-More Diffie-Hellman assumption in ROM.We propose an alternative UC saPAKE construction based on a novel use of the encryption+SPHF paradigm for UC PAKE design [19, 26]. Compared to OPAQUE, our protocol uses only 2 flows, has comparable costs, avoids hashing onto a group, and relies on different assumptions, namely Decisional Diffie-Hellman (DDH), Strong Diffie-Hellman (SDH), and an assumption that the Boneh-Boyen function $$f_ s (x)=g^{1/( s +x)}$$ [9] is a Salted Tight One-Way Function (STOWF). We formalize a UC model for STOWF and analyze the Boneh-Boyen function as UC STOWF in the generic group model and ROM.Our saPAKE protocol employs a new form of Conditional Key Encapsulation Mechanism (CKEM), a generalization of SPHF, which we call an implicit-statement CKEM. This strengthening of SPHF allows for a UC (sa)PAKE design where only the client commits to its password, and only the server performs an SPHF, compared to the standard UC PAKE design paradigm where the encrypt+SPHF subroutine is used symmetrically by both parties.
Coauthors
- Michel Abdalla (1)
- Manuel Barbosa (1)
- Tatiana Bradley (2)
- Stanislaw Jarecki (2)
- Jonathan Katz (1)
- Jiayu Xu (2)