CryptoDB
Mikhail Volkhov
Publications
Year
Venue
Title
2024
ASIACRYPT
Updatable Privacy-Preserving Blueprints
Abstract
Privacy-preserving blueprint schemes (Kohlweiss et al., EUROCRYPT'23) offer a mechanism for safeguarding user's privacy while allowing for specific legitimate controls by a designated auditor agent. These schemes enable users to create escrows encrypting the result of evaluating a function y=P(t,x), with P being publicly known, t a secret used during the auditor's key generation, and x the user's private input.
Crucially, escrows only disclose the blueprinting result y=P(t,x) to the designated auditor, even in cases where the auditor is fully compromised.
The original definition and construction only support the evaluation of functions P on an input x provided by a single user.
We address this limitation by introducing updatable privacy-preserving blueprint schemes (UPPB), which enhance the original notion with the ability for multiple users to non-interactively update the private user input x while blueprinting.
Moreover, UPPBs contain a proof that y is the result of a sequence of valid updates, while revealing nothing else about the private inputs {x_i} of updates.
As in the case of privacy-preserving blueprints, we first observe that UPPBs can be realized via a generic construction for arbitrary predicates P based on FHE and NIZKs.
Our main result is uBlu, an efficient instantiation for a specific predicate comparing the values x and t, where x is the cumulative sum of users' private inputs and t is a fixed private value provided by the auditor in the setup phase.
This rather specific setting already finds interesting applications
such as privacy-preserving anti-money laundering and location tracking, and can be extended to support more generic predicates.
From the technical perspective, we devise a novel technique to keep the escrow size concise, independent of the number of updates, and reasonable for practical applications. We achieve this via a novel characterization of malleability for the algebraic NIZK by Couteau and Hartmann (CRYPTO’20) that allows for an additive update function.
2023
PKC
Zero-Knowledge Arguments for Subverted RSA Groups
Abstract
This work investigates zero-knowledge protocols in subverted RSA groups where the prover can choose the modulus and where the verifier does not know the group order. We introduce a novel technique for extracting the witness from a general homomorphism over a group of unknown order that does not require parallel repetitions. We then present a NIZK range proof for general homomorphisms as Paillier encryptions in the designated verifier model that works under a subverted setup. The key ingredient of our proof is a constant sized NIZK proof of knowledge for a plaintext. Security is proven in the ROM assuming an IND-CPA additively homomorphic encryption scheme. The verifier's public key can be maliciously generated and is reusable and linear in the number of proofs to be verified.
2021
ASIACRYPT
Snarky Ceremonies
📺
Abstract
Succinct non-interactive arguments of knowledge (SNARKs) have found numerous applications in the blockchain setting and elsewhere. The most efficient SNARKs require a distributed ceremony protocol to generate public parameters, also known as a structured reference string (SRS). Our contributions are two-fold:
\begin{compactitem}
\item We give a security framework for non-interactive zero-knowledge arguments with a ceremony protocol.
\item We revisit the ceremony protocol of Groth's SNARK [Bowe et al., 2017]. We show that the original construction can be simplified and optimized, and then prove its security in our new framework. Importantly, our construction avoids the random beacon model used in the original work.
\end{compactitem}
Coauthors
- Bernardo David (1)
- Felix Engelmann (1)
- Tore Kasper Frederiksen (1)
- Markulf Kohlweiss (2)
- Dimitris Kolonelos (1)
- Mary Maller (2)
- Elena Pagnin (1)
- Janno Siim (1)
- Mikhail Volkhov (3)