CryptoDB
Roland Gröll
Publications
Year
Venue
Title
2024
PKC
Chosen-Ciphertext Secure Dual-Receiver Encryption in the Standard Model Based on Post-Quantum Assumptions
Abstract
Dual-receiver encryption (DRE) is a special form of public key encryption (PKE) that allows a sender to encrypt a message for two recipients. Without further properties, the difference between DRE and
PKE is only syntactical. One such important property is soundness, which requires that no ciphertext can be constructed such that the recipients decrypt to different plaintexts. Many applications rely on this property in order to realize more complex protocols or primitives. In addition many of these applications explicitly avoid the usage of the random oracle, which poses an additional requirement on a DRE construction. We show that all of the IND-CCA2 secure standard model DRE constructions based on post-quantum assumptions fall short of augmenting the constructions with soundness and describe attacks thereon.
We then give an overview over all applications of IND-CCA2 secure DRE, group them into generic (i. e., applications using DRE as black-box) and non-generic applications and demonstrate that all generic ones require either soundness or public verifiability.
Conclusively, we identify the gap of IND-CCA2 secure DRE constructions with soundness based on post-quantum assumptions in the standard model. In order to fill this gap we provide two direct IND-CCA2 secure DRE constructions based on the standard post-quantum assumptions, Normal Form Learning With Errors (NLWE) and Learning Paritiy with Noise (LPN).
2022
PKC
A New Security Notion for PKC in the Standard Model: Weaker, Simpler, and Still Realizing Secure Channels
📺
Abstract
Encryption satisfying CCA2 security is commonly known to be unnecessarily strong for realizing secure channels. Moreover, CCA2 constructions in the standard model are far from being competitive practical alternatives to constructions via random oracle. A promising research area to alleviate this problem are weaker security notions—like IND-RCCA secure encryption or IND-atag-wCCA secure tag-based encryption—which are still able to facilitate secure message transfer (SMT) via authenticated channels.
In this paper we introduce the concept of sender-binding encryption (SBE), unifying prior approaches of SMT construction in the universal composability (UC) model. We furthermore develop the corresponding non-trivial security notion of IND-SB-CPA and formally prove that it suffices for realizing SMT in conjunction with authenticated channels. Our notion is the weakest so far in the sense that it can be generically constructed from the weakest prior notions—RCCA and atag-wCCA—without additional assumptions, while the reverse is not true. A direct consequence is that IND-stag-wCCA, which is strictly weaker than IND-atag-wCCA but stronger than our IND-SB-CPA, can be used to construct a secure channel.
Finally, we give an efficient IND-SB-CPA secure construction in the standard model from IND-CPA secure double receiver encryption (DRE) based on McEliece. This shows that IND-SB-CPA security yields simpler and more efficient constructions in the standard model than the weakest prior notions, i.e., IND-atag-wCCA and IND-stag-wCCA.
Coauthors
- Laurin Benz (1)
- Wasilij Beskorovajnov (2)
- Sarai Eilebrecht (1)
- Roland Gröll (2)
- Maximilian Müller (1)
- Jörn Müller-Quade (2)
- Astrid Ottenhues (1)
- Rebecca Schwerdt (1)