CryptoDB
Niv Gilboa
ORCID: 0000-0001-7209-3494
Publications
Year
Venue
Title
2024
CRYPTO
Compressing Unit-Vector Correlations via Sparse Pseudorandom Generators
Abstract
A unit-vector (UV) correlation is an additive secret-sharing of a vector of length B that contains 1 in a secret random position and 0's elsewhere. UV correlations are a useful resource for many cryptographic applications, including low-communication secure multiparty computation and multi-server private information retrieval. However, current practical methods for securely generating UV correlations involve a significant communication cost per instance, and become even more expensive when requiring security against malicious parties.
In this work, we present a new approach for constructing a pseudorandom correlation generator (PCG) for securely generating n independent instances of UV correlations of any polynomial length B. Such a PCG compresses the n UV instances into correlated seeds whose length is sublinear in the description size n log B. Our new PCGs apply in both the honest-majority and dishonest-majority settings, and are based on a variety of assumptions. In particular, in the honest-majority case they only require "unstructured" assumptions. Our PCGs give rise to secure end-to-end protocols for generating n instances of UV correlations with o(n) bits of communication. This applies even to an authenticated variant of UV correlations, which is useful for security against malicious parties. Unlike previous theoretical solutions, some instances of our PCGs offer good concrete efficiency.
Our technical approach is based on combining a low-degree sparse pseudorandom generator, mapping a sparse seed to a pseudorandom sparse output, with homomorphic secret sharing for low-degree polynomials. We then reduce such sparse PRGs to local PRGs over large alphabets, and explore old and new approaches for maximizing the stretch of such PRGs while minimizing their locality.
Finally, towards further compressing the PCG seeds, we present a new PRG-based construction of a multiparty distributed point function (DPF), whose outputs are degree-1 Shamir-shares of a secret point function. This result is independently motivated by other DPF applications.
2023
EUROCRYPT
Oblivious Transfer with Constant Computational Overhead
Abstract
The computational overhead of a cryptographic task is the asymptotic ratio between the computational cost of securely realizing the task and that of realizing the task with no security at all. Ishai, Kushilevitz, Ostrovsky, and Sahai (STOC 2008) showed that secure two-party computation of Boolean circuits can be realized with constant computational overhead, independent of the desired level of security, assuming the existence of an oblivious transfer (OT) protocol and a local pseudorandom generator (PRG). However, this only applies to the case of semi-honest parties. A central open question in the area is the possibility of a similar result for malicious parties. This question is open even for the simpler task of securely realizing many instances of a constant-size function, such as OT of bits.
We settle the question in the affirmative for the case of OT, assuming: (1) a standard OT protocol, (2) a slightly stronger “correlation-robust” variant of a local PRG, and (3) a standard sparse variant of the Learning Parity with Noise (LPN) assumption. An optimized version of our construction requires fewer than 100 bit operations per party per bit-OT. For 128-bit security, this improves over the best previous protocols by 1-2 orders of magnitude.
We achieve this by constructing a constant-overhead pseudorandom correlation generator (PCG) for the bit-OT correlation. Such a PCG generates N pseudorandom instances of bit-OT by locally expanding short, correlated seeds. As a result, we get an end-to-end protocol for generating N pseudorandom instances of bit-OT with o(N) communication, O(N) computation, and security that scales sub-exponentially with N.
Finally, we present applications of our main result to realizing other secure computation tasks with constant computational overhead. These include protocols for general circuits with a relaxed notion of security against malicious parties, protocols for realizing N instances of natural constant-size functions, and reducing the main open question to a potentially simpler question about fault-tolerant computation.
2023
CRYPTO
Arithmetic Sketching
Abstract
This paper introduces arithmetic sketching, an abstraction of a primitive that several previous works use to achieve lightweight, low-communication zero-knowledge verification of secret-shared vectors. An arithmetic sketching scheme for a language L ⊆ F^n consists of (1) a randomized linear function compressing a long input x to a short “sketch,” and (2) a small arithmetic circuit that accepts the sketch if and only if x ∈ L, up to some small error. If the language L has an arithmetic sketching scheme with short sketches, then it is possible to test membership in L using an arithmetic circuit with few multiplication gates. Since multiplications are the dominant cost in protocols for computation on secret-shared, encrypted, and committed data, arithmetic sketching schemes give rise to lightweight protocols in each of these settings.
In addition to the formalization of arithmetic sketching, our contributions are:
– A general framework for constructing arithmetic sketching schemes from algebraic varieties. This framework unifies schemes from prior work and gives rise to schemes for useful new languages and with improved soundness error.
– The first arithmetic sketching schemes for languages of sparse vectors: vectors with bounded Hamming weight, bounded L1 norm, and vectors whose few non-zero values satisfy a given predicate.
– A method for “compiling” any arithmetic sketching scheme for a language L into a low-communication malicious-secure multi-server protocol for securely testing that a client-provided secret-shared vector is in L.
We also prove the first nontrivial lower bounds showing limits on the sketch size for certain languages (e.g., vectors of Hamming-weight one) and proving the non-existence of arithmetic sketching schemes for others
(e.g., the language of all vectors that contain a specific value).
2022
EUROCRYPT
Secure Multiparty Computation with Sublinear Preprocessing
📺
Abstract
A common technique for enhancing the efficiency of secure multiparty computation (MPC) with dishonest majority is via {\em preprocessing}: In an offline phase, parties engage in an input-independent protocol to securely generate correlated randomness. Once inputs are known, the correlated randomness is consumed by a ``non-cryptographic'' and highly efficient online protocol.
The correlated randomness in such protocols traditionally comes in two flavors: multiplication triples (Beaver, Crypto '91), which suffice for security against semi-honest parties, and {\em authenticated} multiplication triples (Bendlin et al., Eurocrypt '11, Damg{\aa}rd et al., Crypto '12) that yield efficient protocols against malicious parties.
Recent constructions of pseudorandom correlation generators (Boyle et al., Crypto '19, '20) enable concretely efficient secure generation of multiplication triples with {\em sublinear communication complexity}. However, these techniques do not efficiently apply to authenticated triples, except in the case of secure two-party computation of arithmetic circuits over large fields.
In this work, we propose the first {\em concretely efficient} approach for (malicious) MPC with preprocessing
in which the offline communication is {\em sublinear} in the circuit size.
More specifically, the offline communication scales with the {\em square root} of the circuit size.
From a feasibility point of view, our protocols can make use of any secure protocol for generating (unauthenticated) multiplication triples together with any {\em additive} homomorphic encryption. We propose concretely efficient instantiations (based on strong but plausible ``linear-only'' assumptions) from existing homomorphic encryption schemes and pseudorandom correlation generators.
Our technique is based on a variant of a recent protocol of Boyle et al. (Crypto '21) for MPC with preprocessing. As a result, our protocols inherit the succinct correlated randomness feature of the latter protocol.
2022
CRYPTO
Programmable Distributed Point Functions
📺
Abstract
A distributed point function (DPF) is a cryptographic primitive that enables compressed additive sharing of a secret unit vector
across two or more parties. Despite growing ubiquity within applications
and notable research efforts, the best 2-party DPF construction to date
remains the tree-based construction from (Boyle et al, CCS’16), with no
significantly new approaches since.
We present a new framework for 2-party DPF construction, which applies in the setting of feasible (polynomial-size) domains. This captures
in particular all DPF applications in which the keys are expanded to
the full domain. Our approach is motivated by a strengthened notion
we put forth, of programmable DPF (PDPF): in which a short, input-independent “offline” key can be reused for sharing many point functions.
– PDPF from OWF. We construct a PDPF for feasible domains from
the minimal assumption that one-way functions exist, where the second “online” key size is polylogarithmic in the domain size N.
Our approach offers multiple new efficiency features and applications:
– Privately puncturable PRFs. Our PDPF gives the first OWF-based
privately puncturable PRFs (for feasible domains) with sublinear keys.
– O(1)-round distributed DPF Gen. We obtain a (standard) DPF with
polylog-size keys that admits an analog of Doerner-shelat (CCS’17)
distributed key generation, requiring only O(1) rounds (versus log N).
– PCG with 1 short key. Compressing useful correlations for secure
computation, where one key size is of minimal size. This provides up
to exponential communication savings in some application scenarios.
2022
CRYPTO
Correlated Pseudorandomness from Expand-Accumulate Codes
📺
Abstract
A pseudorandom correlation generator (PCG) is a recent tool for securely generating useful sources of correlated randomness, such as random oblivious transfers (OT) and vector oblivious linear evaluations (VOLE), with low communication cost.
We introduce a simple new design for PCGs based on so-called expand-accumulate codes, which first apply a sparse random expander graph to replicate each message entry, and then accumulate the entries by computing the sum of each prefix. Our design offers the following advantages compared to state-of-the-art PCG constructions:
- Competitive concrete efficiency backed by provable security against relevant classes of attacks;
- An offline-online mode that combines near-optimal cache-friendliness with simple parallelization;
- Concretely efficient extensions to pseudorandom correlation functions, which enable incremental generation of new correlation instances on demand, and to new kinds of correlated randomness that include circuit-dependent correlations.
To further improve the concrete computational cost, we propose a method for speeding up a full-domain evaluation of a puncturable pseudorandom function (PPRF). This is independently motivated by other cryptographic applications of PPRFs.
2021
EUROCRYPT
Function Secret Sharing for Mixed-Mode and Fixed-Point Secure Computation
📺
Abstract
Recently Boyle et al. (TCC 2019) proposed a new approach for secure computation in the {\em preprocessing model} building on {\em function secret sharing} (FSS). This approach can be used to realize any circuit containing gates that admit efficient FSS schemes. In this work, we make the following three technical contributions:
{\bf Improved Key Size.} The complexity of the preprocessing phase directly depends on the FSS key size. We improve the size of FSS keys for several existing FSS constructions through two important steps. First, we present a roughly $4\times$ reduction in FSS key size for the Distributed Comparison Function (DCF), i.e. ($f_\alpha(x) = \beta$ for all $x < \alpha$ and $0$, otherwise). Second, prior FSS schemes for many important function classes are obtained via reductions to multiple instances of DCF; for example, 2 instances for interval containment and $2m$ for splines with $m$ pieces. We significantly improve these reductions for public intervals and obtain {\em optimal} FSS schemes, i.e., through a {\em single instance of DCF}, thereby reducing the key sizes by up to $6-22\times$ for commonly used functions in mixed-mode secure computation such as ReLU and sigmoid.
{\bf FSS for New Function Families.} We present the first constructions of FSS schemes for arithmetic and logical right shift, as well as for bit-decomposition, where the output bits must be secret shared in a larger ring. These functions are crucial for many applications such as fixed-point arithmetic and machine learning.
{\bf FSS for Fixed-Point Arithmetic and Barrier.} One of the important functions in the realization of secure fixed-point arithmetic is that of multiply-then-truncate. While our work shows how to obtain a construction for this function in 2 rounds using sequential calls to FSS schemes for multiply and shift, we demonstrate a barrier towards improving this via FSS beyond what we achieve. Specifically, we show that a 1-round solution would require settling a major open problem in the area of FSS: namely, building an FSS for the class of bit-conjunction functions based on only symmetric-key cryptographic assumptions.
2021
CRYPTO
Low-Complexity Weak Pseudorandom Functions in AC0[MOD2]
📺
Abstract
A *weak pseudorandom function* (WPRF) is a keyed function $f_k:\{0,1\}^n\to\{0,1\}$ such that, for a random key $k$, a collection of samples $(x, f_k(x))$, for {\em uniformly random} inputs $x$, cannot be efficiently distinguished from totally random input-output pairs $(x,y)$. We study WPRFs in AC0[MOD2], the class of functions computable by AC0 circuits with parity gates, making the following contributions.
- *Between Lapland and Cryptomania.* We show that WPRFs in AC0[MOD2] imply a variant of the Learning Parity with Noise (LPN) assumption. This gives an unconditional version of an earlier conditional result of Akavia et al. (ITCS 2014). We further show that WPRFs in a subclass of AC0[mod 2] that includes a recent WPRF candidate by Boyle et al. (FOCS 2020) imply, under a seemingly weak additional conjecture, public-key encryption.
- *WPRF by sparse polynomials.* We propose the first WPRF candidate that can be computed by sparse multivariate polynomials over $\F_2$. We prove that it has subexponential security against linear and algebraic attacks.
- *WPRF in AC0 ◦ MOD2.* We study the existence of WPRFs computed by AC0 circuits \emph{over} parity gates. We propose a modified version of a previous WPRF candidate of Akavia et al., and prove that it resists the algebraic attacks that were used by Bogdanov and Rosen (ECCC 2017) to break the original candidate in quasipolynomial time. We give evidence against the possibility of using {\em public} parity gates and relate this question to other conjectures.
2021
CRYPTO
Sublinear GMW-Style Compiler for MPC with Preprocessing
📺
Abstract
We consider the efficiency of protocols for secure multiparty computation (MPC) with a dishonest majority. A popular approach for the design of such protocols is to employ {\em preprocessing}. Before the inputs are known, the parties generate correlated secret randomness, which is consumed by a fast and ``information-theoretic'' online protocol.
A powerful technique for securing such protocols against malicious parties uses {\em homomorphic MACs} to authenticate the values produced by the online protocol. Compared to a baseline protocol, which is only secure against semi-honest parties, this involves a significant increase in the size of the correlated randomness, by a factor of up to a statistical security parameter. Different approaches for partially mitigating this extra storage cost come at the expense of increasing the online communication.
In this work we propose a new technique for protecting MPC with preprocessing against malicious parties. We show that for circuit evaluation protocols that satisfy mild security and structural requirements, that are met by almost all standard protocols with semi-honest security, the extra {\em additive} storage and online communication costs are both {\em logarithmic} in the circuit size. This applies to Boolean circuits and to arithmetic circuits over fields or rings, and to both information-theoretic and computationally secure protocols. Our protocol can be viewed as a sublinear information-theoretic variant of the celebrated ``GMW compiler'' that applies to MPC with preprocessing.
Our compiler makes a novel use of the techniques of Boneh et al. (Crypto 2019) for sublinear distributed zero knowledge, which were previously only used in the setting of {\em honest-majority} MPC.
2021
TCC
Generalized Pseudorandom Secret Sharing and Efficient Straggler-Resilient Secure Computation
📺
Abstract
Secure multiparty computation (MPC) enables $n$ parties, of which up to $t$ may be corrupted, to perform joint computations on their private inputs while revealing only the outputs. Optimizing the asymptotic and concrete costs of MPC protocols has become an important line of research. Much of this research focuses on the setting of an honest majority, where $n \ge 2t+1$, which gives rise to concretely efficient protocols that are either information-theoretic or make a black-box use of symmetric cryptography. Efficiency can be further improved in the case of a {\em strong} honest majority, where $n>2t+1$.
Motivated by the goal of minimizing the communication and latency costs of MPC with a strong honest majority, we make two related contributions.
\begin{itemize}[leftmargin=*]
\item {\bf Generalized pseudorandom secret sharing (PRSS).}
Linear correlations serve as an important resource for MPC protocols and beyond. PRSS enables secure generation of many pseudorandom instances of such correlations without interaction, given replicated seeds of a pseudorandom function.
We extend the PRSS technique of Cramer et al.\ (TCC 2015) for sharing degree-$d$ polynomials to new constructions leveraging a particular class of combinatorial designs. Our constructions yield a dramatic efficiency improvement when the degree $d$ is higher than the security threshold $t$, not only for standard degree-$d$ correlations but also for several useful generalizations. In particular, correlations for locally converting between slot configurations in ``share packing'' enable us to avoid the concrete overhead of prior works.
\item {\bf Cheap straggler resilience.}
In reality, communication is not fully synchronous: protocol executions suffer from variance in communication delays and occasional node or message-delivery failures. We explore the benefits of PRSS-based MPC with a strong honest majority toward robustness against such failures, in turn yielding improved latency delays. In doing so we develop a novel technique for defending against a subtle ``double-dipping'' attack, which applies to the best existing protocols, with almost no extra cost in communication or rounds.
\end{itemize}
Combining the above tools requires further work, including new methods for batch verification via distributed zero-knowledge proofs (Boneh et al., CRYPTO 2019) that apply to packed secret sharing.
Overall, our work demonstrates new advantages of the strong honest majority setting, and introduces new tools---in particular, generalized PRSS---that we believe will be of independent use within other cryptographic applications.
2020
CRYPTO
Efficient Pseudorandom Correlation Generators from Ring-LPN
📺
Abstract
Secure multiparty computation can often utilize a trusted source of correlated randomness to achieve better efficiency. A recent line of work, initiated by Boyle et al. (CCS 2018, Crypto 2019), showed how useful forms of correlated randomness can be generated using a cheap, one-time interaction, followed by only ``silent'' local computation. This is achieved via a \emph{pseudorandom correlation generator} (PCG), a deterministic function that stretches short correlated seeds into long instances of a target correlation. Previous works constructed concretely efficient PCGs for simple but useful correlations, including random oblivious transfer and vector-OLE, together with efficient protocols to distribute the PCG seed generation. Most of these constructions were based on variants of the Learning Parity with Noise (LPN) assumption. PCGs for other useful correlations had poor asymptotic and concrete efficiency.
In this work, we design a new class of efficient PCGs based on different flavors of the {\em ring-LPN} assumption. Our new PCGs can generate OLE correlations, authenticated multiplication triples, matrix product correlations, and other types of useful correlations over large fields. These PCGs are more efficient by orders of magnitude than the previous constructions and can be used to improve the preprocessing phase of many existing MPC protocols.
2020
ASIACRYPT
Efficient Fully Secure Computation via Distributed Zero-Knowledge Proofs
📺
Abstract
Secure computation protocols enable mutually distrusting parties to compute a function of their private inputs while revealing nothing but the output.
Protocols with {\em full security} (also known as {\em guaranteed output delivery}) in particular protect against denial-of-service attacks, guaranteeing that honest parties receive a correct output. This feature can be realized in the presence of an honest majority, and significant research effort has gone toward attaining full security with good asymptotic and concrete efficiency.
We present a fully secure protocol for {\em any constant} number of parties $n$ and $t<n/2$ corruptions that achieves full security with the {\em same amortized communication} as for semi-honest security: $\frac{3t}{2t+1}|C| + o(|C|)$ $R$-elements per party ($\approx 1.5$ $R$-elements), for a circuit with $|C|$ multiplication gates over either a finite field $R=\FF$ or over the ring $R=\Z_{2^k}$.
Our techniques include new methods for utilizing the distributed zero-knowledge proofs of Boneh {\em et al.} (CRYPTO 2019) for both distributed verifiers {\em and} provers. As a secondary contribution, we show that similar techniques can be used to compile the best known honest-majority protocols for an arbitrary (super-constant) number of semi-honest parties into ones that achieve {\em security with abort} against malicious parties, with sublinear additive cost.
We present an efficient protocol for {\em any constant} number of parties $n$, with full security against $t<n/2$ corrupted parties, that makes a black-box use of a pseudorandom generator. Our protocol evaluates an arithmetic circuit $C$ over a finite ring $R$ (either a finite field or $R=\Z_{2^k}$) with communication complexity of $\frac{3t}{2t+1}S + o(S)$ $R$-elements per party, where $S$ is the number of multiplication gates in $C$ (namely, $<1.5$ elements per party per gate). This matches the best known protocols for the semi-honest model up to the sublinear additive term. For a small number of parties $n$, this improves over a recent protocol of Goyal {\em et al.} (Crypto 2020) by a constant factor for circuits over large fields, and by at least an $\Omega(\log n)$ factor for Boolean circuits or circuits over rings.
Our protocol provides new methods for applying the distributed zero-knowledge proofs of Boneh {\em et al.}~(Crypto 2019), which only require logarithmic communication, for compiling semi-honest protocols into fully secure ones in the more challenging case of $t>1$ corrupted parties.
%Similarly to the recent fully secure 3-party protocol of Boyle {\em et al.} (CCS 2019), our protocol builds on the sublinear-communication distributed zero-knowledge proofs of Boneh {\em et al.} (Crypto 2019) to compile any ``natural'' semi-honest protocol into a fully secure protocol. However, applying this tool with $t>1$ corrupted parties introduces several nontrivial challenges that we overcome in this work.
Our protocol relies on {\em replicated secret sharing} to minimize communication and simplify the mechanism for achieving full security. This results in computational cost that scales exponentially with $n$.
Our main protocol builds on a new honest-majority protocol for verifying the correctness of multiplication triples by making a {\em general} use of distributed zero-knowledge proofs. While the protocol only achieves the weaker notion of {\em security with abort}, it applies to any linear secret-sharing scheme and provides a conceptually simpler, more general, and more efficient alternative to previous protocols from the literature. In particular, it can be combined with the Fiat-Shamir heuristic to simultaneously achieve logarithmic communication complexity and constant round complexity.
2019
CRYPTO
Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs
📺
Abstract
We introduce and study the notion of fully linear probabilistically checkable proof systems. In such a proof system, the verifier can make a small number of linear queries that apply jointly to the input and a proof vector.Our new type of proof system is motivated by applications in which the input statement is not fully available to any single verifier, but can still be efficiently accessed via linear queries. This situation arises in scenarios where the input is partitioned or secret-shared between two or more parties, or alternatively is encoded using an additively homomorphic encryption or commitment scheme. This setting appears in the context of secure messaging platforms, verifiable outsourced computation, PIR writing, private computation of aggregate statistics, and secure multiparty computation (MPC). In all these applications, there is a need for fully linear proof systems with short proofs.While several efficient constructions of fully linear proof systems are implicit in the interactive proofs literature, many questions about their complexity are open. We present several new constructions of fully linear zero-knowledge proof systems with sublinear proof size for “simple” or “structured” languages. For example, in the non-interactive setting of fully linear PCPs, we show how to prove that an input vector $$x\in {\mathbb {F}}^n$$, for a finite field $${\mathbb {F}}$$, satisfies a single degree-2 equation with a proof of size $$O(\sqrt{n})$$ and $$O(\sqrt{n})$$ linear queries, which we show to be optimal. More generally, for languages that can be recognized by systems of constant-degree equations, we can reduce the proof size to $$O(\log n)$$ at the cost of $$O(\log n)$$ rounds of interaction.We use our new proof systems to construct new short zero-knowledge proofs on distributed and secret-shared data. These proofs can be used to improve the performance of the example systems mentioned above.Finally, we observe that zero-knowledge proofs on distributed data provide a general-purpose tool for protecting MPC protocols against malicious parties. Applying our short fully linear PCPs to “natural” MPC protocols in the honest-majority setting, we can achieve unconditional protection against malicious parties with sublinear additive communication cost. We use this to improve the communication complexity of recent honest-majority MPC protocols. For instance, using any pseudorandom generator, we obtain a 3-party protocol for Boolean circuits in which the amortized communication cost is only one bit per AND gate per party (compared to 10 bits in the best previous protocol), matching the best known protocols for semi-honest parties.
2019
CRYPTO
Efficient Pseudorandom Correlation Generators: Silent OT Extension and More
📺
Abstract
Secure multiparty computation (MPC) often relies on correlated randomness for better efficiency and simplicity. This is particularly useful for MPC with no honest majority, where input-independent correlated randomness enables a lightweight “non-cryptographic” online phase once the inputs are known. However, since the amount of randomness typically scales with the circuit size of the function being computed, securely generating correlated randomness forms an efficiency bottleneck, involving a large amount of communication and storage.A natural tool for addressing the above limitations is a pseudorandom correlation generator (PCG). A PCG allows two or more parties to securely generate long sources of useful correlated randomness via a local expansion of correlated short seeds and no interaction. PCGs enable MPC with silent preprocessing, where a small amount of interaction used for securely sampling the seeds is followed by silent local generation of correlated pseudorandomness.A concretely efficient PCG for Vector-OLE correlations was recently obtained by Boyle et al. (CCS 2018) based on variants of the learning parity with noise (LPN) assumption over large fields. In this work, we initiate a systematic study of PCGs and present concretely efficient constructions for several types of useful MPC correlations. We obtain the following main contributions:PCG foundations. We give a general security definition for PCGs. Our definition suffices for any MPC protocol satisfying a stronger security requirement that is met by existing protocols. We prove that a stronger security requirement is indeed necessary, and justify our PCG definition by ruling out a stronger and more natural definition.Silent OT extension. We present the first concretely efficient PCG for oblivious transfer correlations. Its security is based on a variant of the binary LPN assumption and any correlation-robust hash function. We expect it to provide a faster alternative to the IKNP OT extension protocol (Crypto 2003) when communication is the bottleneck. We present several applications, including protocols for non-interactive zero-knowledge with bounded-reusable preprocessing from binary LPN, and concretely efficient related-key oblivious pseudorandom functions.PCGs for simple 2-party correlations. We obtain PCGs for several other types of useful 2-party correlations, including (authenticated) one-time truth-tables and Beaver triples. While the latter PCGs are slower than our PCG for OT, they are still practically feasible. These PCGs are based on a host of assumptions and techniques, including specialized homomorphic secret sharing schemes and pseudorandom generators tailored to their structure.Multiparty correlations. We obtain PCGs for multiparty correlations that can be used to make the (input-dependent) online communication of MPC protocols scale linearly with the number of parties, instead of quadratically.
2019
TCC
Secure Computation with Preprocessing via Function Secret Sharing
Abstract
We propose a simple and powerful new approach for secure computation with input-independent preprocessing, building on the general tool of function secret sharing (FSS) and its efficient instantiations. Using this approach, we can make efficient use of correlated randomness to compute any type of gate, as long as a function class naturally corresponding to this gate admits an efficient FSS scheme. Our approach can be viewed as a generalization of the “TinyTable” protocol of Damgård et al. (Crypto 2017), where our generalized variant uses FSS to achieve exponential efficiency improvement for useful types of gates.By instantiating this general approach with efficient PRG-based FSS schemes of Boyle et al. (Eurocrypt 2015, CCS 2016), we can implement useful nonlinear gates for equality tests, integer comparison, bit-decomposition and more with optimal online communication and with a relatively small amount of correlated randomness. We also provide a unified and simplified view of several existing protocols in the preprocessing model via the FSS framework.Our positive results provide a useful tool for secure computation tasks that involve secure integer comparisons or conversions between arithmetic and binary representations. These arise in the contexts of approximating real-valued functions, machine-learning classification, and more. Finally, we study the necessity of the FSS machinery that we employ, in the simple context of secure string equality testing. First, we show that any “online-optimal” secure equality protocol implies an FSS scheme for point functions, which in turn implies one-way functions. Then, we show that information-theoretic secure equality protocols with relaxed optimality requirements would follow from the existence of big families of “matching vectors.” This suggests that proving strong lower bounds on the efficiency of such protocols would be difficult.
Program Committees
- Eurocrypt 2024
- Crypto 2023
- TCC 2020
- Eurocrypt 2017
Coauthors
- Amit Agarwal (1)
- N. Nalla Anandakumar (1)
- Fabrice Benhamouda (1)
- Dan Boneh (2)
- Elette Boyle (18)
- Nishanth Chandran (1)
- Henry Corrigan-Gibbs (2)
- Geoffroy Couteau (5)
- Niv Gilboa (21)
- Divya Gupta (1)
- Shai Halevi (1)
- Yuval Ishai (20)
- Mahimna Kelkar (1)
- Lisa Kohl (5)
- Victor I. Kolobov (1)
- Yiping Ma (1)
- Ariel Nof (4)
- Mayank Rathee (1)
- Nicolas Resch (2)
- Peter Scholl (5)