International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Ling Ren

Publications

Year
Venue
Title
2024
JOFC
2024
CRYPTO
Adaptively Secure BLS Threshold Signatures from DDH and co-CDH
Sourav Das Ling Ren
Threshold signature is one of the most important cryptographic primitives in distributed systems. A popular choice of threshold signature scheme is the BLS threshold signature introduced by Boldyreva (PKC'03). Some attractive properties of Boldyreva's threshold signature are that the signatures are unique and short, the signing process is non-interactive, and the verification process is identical to that of non-threshold BLS. These properties have resulted in its practical adoption in several decentralized systems. However, despite its popularity and wide adoption, up until recently, the Boldyreva scheme has been proven secure only against a static adversary. Very recently, Bacho and Loss (CCS'22) presented the first proof of adaptive security for the Boldyreva scheme, but they have to rely on strong and non-standard assumptions such as the hardness of one-more discrete log (OMDL) and the Algebraic Group Model~(AGM). In this paper, we present the first adaptively secure threshold BLS signature scheme that relies on the hardness of DDH and co-CDH in asymmetric pairing groups in the Random Oracle Model~(ROM). Our signature scheme also has non-interactive signing, compatibility with non-threshold BLS verification, and practical efficiency like Boldyreva's scheme. These properties make our protocol a suitable candidate for practical adoption with the added benefit of provable adaptive security.
2023
CRYPTO
Practical Settlement Bounds for Longest-Chain Consensus
Nakamoto's longest-chain consensus paradigm now powers the bulk of the world's cryptocurrencies and distributed finance infrastructure. An emblematic property of longest-chain consensus is that it provides probabilistic settlement guarantees that strengthen over time. This makes the exact relationship between settlement error and settlement latency a critical aspect of the protocol that both users and system designers must understand to make informed decisions. A recent line of work has finally provided a satisfactory rigorous accounting of this relationship for proof-of-work longest-chain protocols, but those techniques do not appear to carry over to the proof-of-stake setting. This article develops a new analytic approach for establishing such settlement guarantees that yields explicit, rigorous settlement bounds for proof-of-stake longest-chain protocols, placing them on equal footing with their proof-of-work counterparts. Our techniques apply with some adaptations to the proof-of-work setting where they provide improvements to the state-of-the-art settlement bounds for proof-of-work protocols.
2022
JOFC
Locality-Preserving Oblivious RAM
Oblivious RAMs, introduced by Goldreich and Ostrovsky [JACM’96], compile any RAM program into one that is “memory oblivious,” i.e., the access pattern to the memory is independent of the input. All previous ORAM schemes, however, completely break the locality of data accesses (for instance, by shuffling the data to pseudorandom positions in memory). In this work, we initiate the study of locality-preserving ORAMs —ORAMs that preserve locality of the accessed memory regions, while leaking only the lengths of contiguous memory regions accessed. Our main results demonstrate the existence of a locality-preserving ORAM with polylogarithmic overhead both in terms of bandwidth and locality. We also study the trade-off between locality, bandwidth and leakage, and show that any scheme that preserves locality and does not leak the lengths of the contiguous memory regions accessed, suffers from prohibitive bandwidth. To further improve the parameters, we also consider a weaker notion of a File ORAM, which supports accesses to predefined non-overlapping regions. Assuming one-way functions, we present a computationally secure File ORAM that has a work overhead and locality of roughly $$O(\log ^2 N)$$ O ( log 2 N ) , while ignoring $$\log \log N$$ log log N factors. To the best of our knowledge, before our work, the only works combining locality and obliviousness were for symmetric searchable encryption [e.g., Cash and Tessaro (EUROCRYPT’14), Asharov et al. (STOC’16)]. Symmetric search encryption ensures obliviousness if each keyword is searched only once, whereas ORAM provides obliviousness to any input program. Thus, our work generalizes that line of work to the much more challenging task of preserving locality in ORAMs.
2019
EUROCRYPT
Locality-Preserving Oblivious RAM 📺
Oblivious RAMs, introduced by Goldreich and Ostrovsky [JACM’96], compile any RAM program into one that is “memory oblivious”, i.e., the access pattern to the memory is independent of the input. All previous ORAM schemes, however, completely break the locality of data accesses (for instance, by shuffling the data to pseudorandom positions in memory).In this work, we initiate the study of locality-preserving ORAMs—ORAMs that preserve locality of the accessed memory regions, while leaking only the lengths of contiguous memory regions accessed. Our main results demonstrate the existence of a locality-preserving ORAM with poly-logarithmic overhead both in terms of bandwidth and locality. We also study the tradeoff between locality, bandwidth and leakage, and show that any scheme that preserves locality and does not leak the lengths of the contiguous memory regions accessed, suffers from prohibitive bandwidth.To the best of our knowledge, before our work, the only works combining locality and obliviousness were for symmetric searchable encryption [e.g., Cash and Tessaro (EUROCRYPT’14), Asharov et al. (STOC’16)]. Symmetric search encryption ensures obliviousness if each keyword is searched only once, whereas ORAM provides obliviousness to any input program. Thus, our work generalizes that line of work to the much more challenging task of preserving locality in ORAMs.
2017
PKC
2017
TCC
2017
TCC
2016
TCC
2016
TCC

Program Committees

Asiacrypt 2020
Asiacrypt 2019