CryptoDB
Rupeng Yang
Publications
Year
Venue
Title
2023
EUROCRYPT
Privately Puncturing PRFs from Lattices: Adaptive Security and Collusion Resistant Pseudorandomness
Abstract
A private puncturable pseudorandom function (PRF) enables one to create a constrained version of a PRF key, which can be used to evaluate the PRF at all but some punctured points. In addition, the constrained key reveals no information about the punctured points and the PRF values on them. Existing constructions of private puncturable PRFs are only proven to be secure against a restricted adversary that must commit to the punctured points before viewing any information. It is an open problem to achieve the more natural adaptive security, where the adversary can make all its choices on-the-fly.
In this work, we solve the problem by constructing an adaptively secure private puncturable PRF from standard lattice assumptions. To achieve this goal, we present a new primitive called explainable hash, which allows one to reprogram the hash function on a given input. The new primitive may find further applications in constructing more cryptographic schemes with adaptive security. Besides, our construction has collusion resistant pseudorandomness, which requires that even given multiple constrained keys, no one could learn the values of the PRF at the punctured points. Private puncturable PRFs with collusion resistant pseudorandomness were only known from multilinear maps or indistinguishability obfuscations in previous works, and we provide the first solution from standard lattice assumptions.
2022
CRYPTO
Public-Key Watermarking Schemes for Pseudorandom Functions
📺
Abstract
A software watermarking scheme can embed a message into a program while preserving its functionality. The embedded message can be extracted later by an extraction algorithm, and no one could remove it without significantly changing the functionality of the program. A watermarking scheme is public key if neither the marking procedure nor the extraction procedure needs a watermarking secret key. Prior constructions of watermarking schemes mainly focus on watermarking pseudorandom functions (PRFs), and the major open problem in this direction is to construct a public-key watermarkable PRF.
In this work, we solve the open problem via constructing public-key watermarkable PRFs with different trade-offs from various assumptions, ranging from standard lattice assumptions to the existence of indistinguishability obfuscation. To achieve the results, we first construct watermarking schemes in a weaker model, where the extraction algorithm is provided with a “hint” about the watermarked PRF key. Then we upgrade the constructions to standard watermarking schemes using a robust unobfuscatable PRF. We also provide the first construction of robust unobfuscatable PRF in this work, which is of independent interest.
2021
ASIACRYPT
Simulation-Based Bi-Selective Opening Security for Public Key Encryption
📺
Abstract
Selective opening attacks (SOA) (for public-key encryption, PKE) concern such a multi-user scenario, where an adversary adaptively corrupts some fraction of the users to break into a subset of honestly created ciphertexts, and tries to learn the information on the messages of some unopened (but potentially related) ciphertexts. Until now, the notion of selective opening attacks is only considered in two settings: sender selective opening (SSO), where part of senders are corrupted and messages together with randomness for encryption are revealed; and receiver selective opening (RSO), where part of receivers are corrupted and messages together with secret keys for decryption are revealed.
In this paper, we consider a more natural and general setting for selective opening security. In the setting, the adversary may adaptively corrupt part of senders and receivers \emph{simultaneously}, and get the plaintext messages together with internal randomness for encryption and secret keys for decryption, while it is hoped that messages of uncorrupted parties remain protected. We denote it as Bi-SO security since it is reminiscent of Bi-Deniability for PKE.
We first formalize the requirement of Bi-SO security by the simulation-based (SIM) style, and prove that some practical PKE schemes achieve SIM-Bi-$\text{SO}$-CCA security in the random oracle model. Then, we suggest a weak model of Bi-SO security, denoted as SIM-wBi-$\text{SO}$-CCA security, and argue that it is still meaningful and useful. We propose a generic construction of PKE schemes that achieve SIM-wBi-$\text{SO}$-CCA security in the standard model and instantiate them from various standard assumptions. Our generic construction is built on a newly presented primitive, namely, universal$_{\kappa}$ hash proof system with key equivocability, which may be of independent interest.
2020
CRYPTO
Collusion Resistant Watermarkable PRFs from Standard Assumptions
📺
Abstract
A software watermarking scheme can embed a message into a program without significantly changing its functionality. Moreover, any attempt to remove the embedded message in a marked program will substantially change the functionality of the program. Prior constructions of watermarking schemes focus on watermarking cryptographic functions, such as pseudorandom function (PRF), public key encryption, etc.
A natural security requirement for watermarking schemes is collusion resistance, where the adversary’s goal is to remove the embedded messages given multiple marked versions of the same program. Currently, this strong security guarantee has been achieved by watermarking schemes for public key cryptographic primitives from standard assumptions (Goyal et al., CRYPTO 2019) and by watermarking schemes for PRFs from indistinguishability obfuscation (Yang et al., ASIACRYPT 2019). However, no collusion resistant watermarking scheme for PRF from standard assumption is known.
In this work, we solve this problem by presenting a generic construction that upgrades a watermarkable PRF without collusion resistance to a collusion resistant one. One appealing feature of our construction is that it can preserve the security properties of the original scheme. For example, if the original scheme has security with extraction queries, the new scheme is also secure with extraction queries. Besides, the new scheme can achieve unforgeability even if the original scheme does not provide this security property. Instantiating our construction with existing watermarking schemes for PRF, we obtain collusion resistant watermarkable PRFs from standard assumptions, offering various security properties.
2020
ASIACRYPT
Possibility and Impossibility Results for Receiver Selective Opening Secure PKE in the Multi-Challenge Setting
📺
Abstract
Public key encryption (PKE) schemes are usually deployed in an open system with numerous users. In practice, it is common that some users are corrupted. A PKE scheme is said to be receiver selective opening (RSO) secure if it can still protect messages transmitted to uncorrupted receivers after the adversary corrupts some receivers and learns their secret keys. This is usually defined by requiring the existence of a simulator that can simulate the view of the adversary given only the opened messages. Existing works construct RSO secure PKE schemes in a single-challenge setting, where the adversary can only obtain one challenge ciphertext for each public key. However, in practice, it is preferable to have a PKE scheme with RSO security in the multi-challenge setting, where public keys can be used to encrypt multiple messages.
In this work, we explore the possibility for achieving PKE schemes with receiver selective opening security in the multi-challenge setting. Our contributions are threefold. First, we demonstrate that PKE schemes with RSO security in the single-challenge setting are not necessarily RSO secure in the multi-challenge setting. Then, we show that it is impossible to achieve RSO security for PKE schemes if the number of challenge ciphertexts under each public key is a priori unbounded. In particular, we prove that no PKE scheme can be RSO secure in the $k$-challenge setting (i.e., the adversary can obtain $k$ challenge ciphertexts for each public key) if its secret key contains less than $k$ bits. On the positive side, we give a concrete construction of PKE scheme with RSO security in the $k$-challenge setting, where the ratio of the secret key length to $k$ approaches the lower bound 1.
2019
CRYPTO
Efficient Lattice-Based Zero-Knowledge Arguments with Standard Soundness: Construction and Applications
📺
Abstract
We provide new zero-knowledge argument of knowledge systems that work directly for a wide class of language, namely, ones involving the satisfiability of matrix-vector relations and integer relations commonly found in constructions of lattice-based cryptography. Prior to this work, practical arguments for lattice-based relations either have a constant soundness error $$(2/3)$$, or consider a weaker form of soundness, namely, extraction only guarantees that the prover is in possession of a witness that “approximates” the actual witness. Our systems do not suffer from these limitations.The core of our new argument systems is an efficient zero-knowledge argument of knowledge of a solution to a system of linear equations, where variables of this solution satisfy a set of quadratic constraints. This argument enjoys standard soundness, a small soundness error $$(1/poly)$$, and a complexity linear in the size of the solution. Using our core argument system, we construct highly efficient argument systems for a variety of statements relevant to lattices, including linear equations with short solutions and matrix-vector relations with hidden matrices.Based on our argument systems, we present several new constructions of common privacy-preserving primitives in the standard lattice setting, including a group signature, a ring signature, an electronic cash system, and a range proof protocol. Our new constructions are one to three orders of magnitude more efficient than the state of the art (in standard lattice). This illustrates the efficiency and expressiveness of our argument system.
2019
ASIACRYPT
Collusion Resistant Watermarking Schemes for Cryptographic Functionalities
Abstract
A cryptographic watermarking scheme embeds a message into a program while preserving its functionality. Recently, a number of watermarking schemes have been proposed, which are proven secure in the sense that given one marked program, any attempt to remove the embedded message will substantially change its functionality.In this paper, we formally initiate the study of collusion attacks for watermarking schemes, where the attacker’s goal is to remove the embedded messages given multiple copies of the same program, each with a different embedded message. This is motivated by practical scenarios, where a program may be marked multiple times with different messages.The results of this work are twofold. First, we examine existing cryptographic watermarking schemes and observe that all of them are vulnerable to collusion attacks. Second, we construct collusion resistant watermarking schemes for various cryptographic functionalities (e.g., pseudorandom function evaluation, decryption, etc.). To achieve our second result, we present a new primitive called puncturable functional encryption scheme, which may be of independent interest.
Program Committees
- Crypto 2024
Coauthors
- Man Ho Au (5)
- Zhengan Huang (2)
- Junzuo Lai (3)
- Willy Susilo (2)
- Jian Weng (1)
- William Whyte (1)
- Qiuliang Xu (4)
- Rupeng Yang (7)
- Zuoxia Yu (4)
- Zhenfei Zhang (1)