CryptoDB
Four-State Non-malleable Codes with Explicit Constant Rate
Authors: | |
---|---|
Download: | |
Abstract: | Non-malleable codes (NMCs), introduced by Dziembowski, Pietrzak and Wichs (ITCS 2010), provide a powerful guarantee in scenarios where the classical notion of error-correcting codes cannot provide any guarantee: a decoded message is either the same or completely independent of the underlying message, regardless of the number of errors introduced into the codeword. Informally, NMCs are defined with respect to a family of tampering functions $$\mathcal {F}$$ F and guarantee that any tampered codeword decodes either to the same message or to an independent message, so long as it is tampered using a function $$f \in \mathcal {F}$$ f ∈ F . One of the well-studied tampering families for NMCs is the t -split-state family, where the adversary tampers each of the t “states” of a codeword, arbitrarily but independently. Cheraghchi and Guruswami (TCC 2014) obtain a rate-1 non-malleable code for the case where $$t = \mathcal {O}(n)$$ t = O ( n ) with n being the codeword length and, in (ITCS 2014), show an upper bound of $$1-1/t$$ 1 - 1 / t on the best achievable rate for any t -split state NMC. For $$t=10$$ t = 10 , Chattopadhyay and Zuckerman (FOCS 2014) achieve a constant-rate construction where the constant is unknown. In summary, there is no known construction of an NMC with an explicit constant rate for any $$t= o(n)$$ t = o ( n ) , let alone one that comes close to matching Cheraghchi and Guruswami’s lowerbound! In this work, we construct an efficient non-malleable code in the t -split-state model, for $$t=4$$ t = 4 , that achieves a constant rate of $$\frac{1}{3+\zeta }$$ 1 3 + ζ , for any constant $$\zeta > 0$$ ζ > 0 , and error $$2^{-\varOmega (\ell / log^{c+1} \ell )}$$ 2 - Ω ( ℓ / l o g c + 1 ℓ ) , where $$\ell $$ ℓ is the length of the message and $$c > 0$$ c > 0 is a constant. |
BibTeX
@article{jofc-2019-30114, title={Four-State Non-malleable Codes with Explicit Constant Rate}, journal={Journal of Cryptology}, publisher={Springer}, doi={10.1007/s00145-019-09339-7}, author={Bhavana Kanukurthi and Sai Lakshmi Bhavana Obbattu and Sruthi Sekar}, year=2019 }