CryptoDB
The Parallel Reversible Pebbling Game: Analyzing the Post-Quantum Security of iMHFs
Authors: |
|
---|---|
Download: | |
Presentation: | Slides |
Conference: | TCC 2022 |
Abstract: | The classical (parallel) black pebbling game is a useful abstraction which allows us to analyze the resources (space, space-time, cumulative space) necessary to evaluate a function $f$ with a static data-dependency graph $G$. Of particular interest in the field of cryptography are data-independent memory-hard functions $f_{G,H}$ which are defined by a directed acyclic graph (DAG) $G$ and a cryptographic hash function $H$. The pebbling complexity of the graph $G$ characterizes the amortized cost of evaluating $f_{G,H}$ multiple times as well as the total cost to run a brute-force preimage attack over a fixed domain $\mathcal{X}$, i.e., given $y \in \{0,1\}^*$ find $x \in \mathcal{X}$ such that $f_{G,H}(x)=y$. While a classical attacker will need to evaluate the function $f_{G,H}$ at least $m=|\mathcal{X}|$ times a quantum attacker running Grover's algorithm only requires $O(\sqrt{m})$ blackbox calls to a quantum circuit $C_{G,H}$ evaluating the function $f_{G,H}$. Thus, to analyze the cost of a quantum attack it is crucial to understand the space-time cost (equivalently width times depth) of the quantum circuit $C_{G,H}$. We first observe that a legal black pebbling strategy for the graph $G$ does not necessarily imply the existence of a quantum circuit with comparable complexity --- in contrast to the classical setting where any efficient pebbling strategy for $G$ corresponds to an algorithm with comparable complexity evaluating $f_{G,H}$. Motivated by this observation we introduce a new parallel reversible pebbling game which captures additional restrictions imposed by the No-Deletion Theorem in Quantum Computing. We apply our new reversible pebbling game to analyze the reversible space-time complexity of several important graphs: Line Graphs, Argon2i-A, Argon2i-B, and DRSample. Specifically, (1) we show that a line graph of size $N$ has reversible space-time complexity at most $O(N^{1+\frac{2}{\sqrt{\log N}}})$. (2) We show that any $(e,d)$-reducible DAG has reversible space-time complexity at most $O(Ne+dN2^d)$. In particular, this implies that the reversible space-time complexity of Argon2i-A and Argon2i-B are at most $O(N^2 \log \log N/\sqrt{\log N})$ and $O(N^2/\sqrt[3]{\log N})$, respectively. (3) We show that the reversible space-time complexity of DRSample is at most $O(N^2 \log \log N/\log N)$. We also study the cumulative pebbling cost of reversible pebblings extending a (non-reversible) pebbling attack of Alwen and Blocki on depth-reducible graphs. |
BibTeX
@inproceedings{tcc-2022-32581, title={The Parallel Reversible Pebbling Game: Analyzing the Post-Quantum Security of iMHFs}, publisher={Springer-Verlag}, author={Jeremiah Blocki and Blake Holman and Seunghoon Lee}, year=2022 }