International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Committing Security of Ascon: Cryptanalysis on Primitive and Proof on Mode

Authors:
Yusuke Naito , Mitsubishi Electric Corporation, Kanagawa, Japan
Yu Sasaki , NTT Social Informatics Laboratories, Tokyo, Japan
Takeshi Sugawara , The University of Electro-Communications, Tokyo, Japan
Download:
DOI: 10.46586/tosc.v2023.i4.420-451
URL: https://tosc.iacr.org/index.php/ToSC/article/view/11295
Search ePrint
Search Google
Abstract: Context-committing security of authenticated encryption (AE) that prevents ciphertexts from being decrypted with distinct decryption contexts, (K,N,A) comprising a key K, a nonce N, and associate data A is an active research field motivated by several real-world attacks. In this paper, we study the context-committing security of Ascon, the lightweight permutation-based AE selected by the NIST LWC in 2023, for cryptanalysis on primitive and proof on mode. The attacker’s goal is to find a collision of a ciphertext and a tag with distinct decryption contexts in which an attacker can control all the parameters including the key. First, we propose new attacks with primitives that inject differences in N and A. The new attack on Ascon-128 improves the number of rounds from 2 to 3 and practically generates distinct decryption contexts. The new attack also works in a practical complexity on 3 rounds of Ascon-128a. Second, we prove the context-committing security of Ascon with zero padding, namely Ascon-zp, in the random permutation model. Ascon-zp achieves min {t+z/2 , n+t−k−ν/2 , c/2}-bit security with a t-bit tag, a z-bit padding, an n-bit state, a ν-bit nonce, and a c-bit inner part. This bound corresponds to min {64 + z/2 , 96} with Ascon-128 and Ascon-128a, and min {64 + z/2 , 80} with Ascon-80pq. The original Ascon (z = 0) achieves 64-bit security bounded by a generic birthday attack. By appending zeroes to the plaintext, the security can be enhanced up to 96 bits for Ascon-128 and Ascon-128a and 80 bits for Ascon-80pq.
BibTeX
@article{tosc-2023-33695,
  title={Committing Security of Ascon: Cryptanalysis on Primitive and Proof on Mode},
  journal={IACR Transactions on Symmetric Cryptology},
  publisher={Ruhr-Universität Bochum},
  volume={023 No. 4},
  pages={420-451},
  url={https://tosc.iacr.org/index.php/ToSC/article/view/11295},
  doi={10.46586/tosc.v2023.i4.420-451},
  author={Yusuke Naito and Yu Sasaki and Takeshi Sugawara},
  year=2023
}