CryptoDB
Brent Carmer
Publications
Year
Venue
Title
2019
ASIACRYPT
Public-Key Function-Private Hidden Vector Encryption (and More)
Abstract
We construct public-key function-private predicate encryption for the “small superset functionality,” recently introduced by Beullens and Wee (PKC 2019). This functionality captures several important classes of predicates:Point functions. For point function predicates, our construction is equivalent to public-key function-private anonymous identity-based encryption.Conjunctions. If the predicate computes a conjunction, our construction is a public-key function-private hidden vector encryption scheme. This addresses an open problem posed by Boneh, Raghunathan, and Segev (ASIACRYPT 2013).d-CNFs and read-once conjunctions of d-disjunctions for constant-size d.
Our construction extends the group-based obfuscation schemes of Bishop et al. (CRYPTO 2018), Beullens and Wee (PKC 2019), and Bartusek et al. (EUROCRYPT 2019) to the setting of public-key function-private predicate encryption. We achieve an average-case notion of function privacy, which guarantees that a decryption key
$$\mathsf {sk} _f$$
reveals nothing about f as long as f is drawn from a distribution with sufficient entropy. We formalize this security notion as a generalization of the (enhanced) real-or-random function privacy definition of Boneh, Raghunathan, and Segev (CRYPTO 2013). Our construction relies on bilinear groups, and we prove security in the generic bilinear group model.
Coauthors
- James Bartusek (1)
- Brent Carmer (2)
- Abhishek Jain (1)
- Zhengzhong Jin (1)
- Tancrède Lepoint (1)
- Fermi Ma (1)
- Tal Malkin (1)
- Alex J. Malozemoff (1)
- Mariana Raykova (1)
- Mike Rosulek (1)