International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Rio LaVigne

Publications

Year
Venue
Title
2020
JOFC
Topology-Hiding Computation on All Graphs
Adi Akavia Rio LaVigne Tal Moran
A distributed computation in which nodes are connected by a partial communication graph is called topology hiding if it does not reveal information about the graph beyond what is revealed by the output of the function. Previous results have shown that topology-hiding computation protocols exist for graphs of constant degree and logarithmic diameter in the number of nodes (Moran–Orlov–Richelson, TCC’15; Hirt et al., Crypto’16) as well as for other graph families, such as cycles, trees, and low circumference graphs (Akavia–Moran, Eurocrypt’17), but the feasibility question for general graphs was open. In this work, we positively resolve the above open problem: we prove that topology-hiding computation is feasible for all graphs under either the decisional Diffie–Hellman or quadratic residuosity assumption. Our techniques employ random or deterministic walks to generate paths covering the graph, upon which we apply the Akavia–Moran topology-hiding broadcast for chain graphs (paths). To prevent topology information revealed by the random walk, we design multiple graph-covering sequences that, together, are locally identical to receiving at each round a message from each neighbor and sending back a processed message from some neighbor (in a randomly permuted order).
2020
PKC
Topology-Hiding Computation for Networks with Unknown Delays 📺
Topology-Hiding Computation (THC) allows a set of parties to securely compute a function over an incomplete network without revealing information on the network topology. Since its introduction in TCC’15 by Moran et al., the research on THC has focused on reducing the communication complexity, allowing larger graph classes, and tolerating stronger corruption types. All of these results consider a fully synchronous model with a known upper bound on the maximal delay of all communication channels. Unfortunately, in any realistic setting this bound has to be extremely large, which makes all fully synchronous protocols inefficient. In the literature on multi-party computation, this is solved by considering the fully asynchronous model. However, THC is unachievable in this model (and even hard to define), leaving even the definition of a meaningful model as an open problem. The contributions of this paper are threefold. First, we introduce a meaningful model of unknown and random communication delays for which THC is both definable and achievable. The probability distributions of the delays can be arbitrary for each channel, but one needs to make the (necessary) assumption that the delays are independent. The existing fully-synchronous THC protocols do not work in this setting and would, in particular, leak information about the topology. Second, in the model with trusted stateless hardware boxes introduced at Eurocrypt’18 by Ball et al., we present a THC protocol that works for any graph class. Third, we explore what is achievable in the standard model without trusted hardware and present a THC protocol for specific graph types (cycles and trees) secure under the DDH assumption. The speed of all protocols scales with the actual (unknown) delay times, in contrast to all previously known THC protocols whose speed is determined by the assumed upper bound on the network delay.
2019
CRYPTO
Public-Key Cryptography in the Fine-Grained Setting 📺
Cryptography is largely based on unproven assumptions, which, while believable, might fail. Notably if $$P = NP$$, or if we live in Pessiland, then all current cryptographic assumptions will be broken. A compelling question is if any interesting cryptography might exist in Pessiland.A natural approach to tackle this question is to base cryptography on an assumption from fine-grained complexity. Ball, Rosen, Sabin, and Vasudevan [BRSV’17] attempted this, starting from popular hardness assumptions, such as the Orthogonal Vectors (OV) Conjecture. They obtained problems that are hard on average, assuming that OV and other problems are hard in the worst case. They obtained proofs of work, and hoped to use their average-case hard problems to build a fine-grained one-way function. Unfortunately, they proved that constructing one using their approach would violate a popular hardness hypothesis. This motivates the search for other fine-grained average-case hard problems.The main goal of this paper is to identify sufficient properties for a fine-grained average-case assumption that imply cryptographic primitives such as fine-grained public key cryptography (PKC). Our main contribution is a novel construction of a cryptographic key exchange, together with the definition of a small number of relatively weak structural properties, such that if a computational problem satisfies them, our key exchange has provable fine-grained security guarantees, based on the hardness of this problem. We then show that a natural and plausible average-case assumption for the key problem Zero-k-Clique from fine-grained complexity satisfies our properties. We also develop fine-grained one-way functions and hardcore bits even under these weaker assumptions.Where previous works had to assume random oracles or the existence of strong one-way functions to get a key-exchange computable in O(n) time secure against $$O(n^2)$$ adversaries (see [Merkle’78] and [BGI’08]), our assumptions seem much weaker. Our key exchange has a similar gap between the computation of the honest party and the adversary as prior work, while being non-interactive, implying fine-grained PKC.
2018
TCC
Topology-Hiding Computation Beyond Semi-Honest Adversaries
Topology-hiding communication protocols allow a set of parties, connected by an incomplete network with unknown communication graph, where each party only knows its neighbors, to construct a complete communication network such that the network topology remains hidden even from a powerful adversary who can corrupt parties. This communication network can then be used to perform arbitrary tasks, for example secure multi-party computation, in a topology-hiding manner. Previously proposed protocols could only tolerate passive corruption. This paper proposes protocols that can also tolerate fail-corruption (i.e., the adversary can crash any party at any point in time) and so-called semi-malicious corruption (i.e., the adversary can control a corrupted party’s randomness), without leaking more than an arbitrarily small fraction of a bit of information about the topology. A small-leakage protocol was recently proposed by Ball et al. [Eurocrypt’18], but only under the unrealistic set-up assumption that each party has a trusted hardware module containing secret correlated pre-set keys, and with the further two restrictions that only passively corrupted parties can be crashed by the adversary, and semi-malicious corruption is not tolerated. Since leaking a small amount of information is unavoidable, as is the need to abort the protocol in case of failures, our protocols seem to achieve the best possible goal in a model with fail-corruption.Further contributions of the paper are applications of the protocol to obtain secure MPC protocols, which requires a way to bound the aggregated leakage when multiple small-leakage protocols are executed in parallel or sequentially. Moreover, while previous protocols are based on the DDH assumption, a new so-called PKCR public-key encryption scheme based on the LWE assumption is proposed, allowing to base topology-hiding computation on LWE. Furthermore, a protocol using fully-homomorphic encryption achieving very low round complexity is proposed.
2017
CRYPTO