CryptoDB
Yongsoo Song
ORCID: 0000-0002-0496-9789
Publications
Year
Venue
Title
2024
PKC
Towards Practical Multi-key TFHE: Parallelizable, Key-Compatible, Quasi-linear Complexity
Abstract
Multi-key homomorphic encryption is a generalized notion of homomorphic encryption supporting arbitrary computation on ciphertexts, possibly encrypted under different keys. In this paper, we revisit the work of Chen, Chillotti and Song (ASIACRYPT 2019) and present yet another multi-key variant of the TFHE scheme.
The previous construction by Chen et al. involves a blind rotation procedure where the complexity of each iteration gradually increases as it continuously operates on ciphertexts under different keys. Hence, the complexity of gate bootstrapping grows quadratically with respect to the number of associated keys.
Our scheme is based on a new blind rotation algorithm which consists of two separate phases. We first split a given multi-key ciphertext into several single-key ciphertexts, take each of them as input to the blind rotation procedure, and obtain accumulators corresponding to individual keys. Then, we merge these single-key accumulators into a single multi-key accumulator. In particular, we develop a novel homomorphic operation between single-key and multi-key ciphertexts to instantiate our pipeline.
Therefore, our construction achieves an almost linear time complexity since the gate bootstrapping is dominated by the first phase of blind rotation which requires only independent single-key operations. It also enjoys with great advantages of parallelizability and key-compatibility.
We implement the proposed scheme and provide its performance benchmark. For example, our 16-key gate bootstrapping takes about 5.65s, which is 4.38x faster compared to the prior work.
2024
CRYPTO
Concretely Efficient Lattice-based Polynomial Commitment from Standard Assumptions
Abstract
Polynomial commitment is a crucial cryptographic primitive in constructing zkSNARKs. Most practical constructions to date are either vulnerable against quantum adversaries or lack homomorphic properties, which are essential for recursive proof composition and proof batching. Recently, lattice-based constructions have drawn attention for their potential to achieve all the desirable properties, though they often suffer from concrete inefficiency or rely on newly introduced assumptions requiring further cryptanalysis.
In this paper, we propose a novel construction of a polynomial commitment scheme based on standard lattice-based assumptions. Our scheme achieves a square-root proof size and verification complexity, ensuring concrete efficiency in proof size, proof generation, and verification. Additionally, it features a transparent setup and publicly verifiability.
When compared with Brakedown (CRYPTO 2023), a recent code-based construction, our scheme offers comparable performance across all metrics. Furthermore, its proof size is approximately 4.1 times smaller than SLAP (EUROCRYPT 2024), a recent lattice-based construction.
2023
CRYPTO
Accelerating HE Operations from Key Decomposition Technique
Abstract
Lattice-based homomorphic encryption (HE) schemes are based on the noisy encryption technique, where plaintexts are masked with some random noise for security. Recent advanced HE schemes rely on a decomposition technique to manage the growth of noise, which involves a conversion of a ciphertext entry into a short vector followed by multiplication with an evaluation key. Prior to this work, the decomposition procedure turns out to be the most time-consuming part, as it requires discrete Fourier transforms (DFTs) over the base ring for efficient polynomial arithmetic. In this paper, an expensive decomposition operation over a large modulus is replaced with relatively cheap operations over a ring of integers with a small bound. Notably, the cost of DFTs is reduced from quadratic to linear with the level of a ciphertext without any extra noise growth. We demonstrate the implication of our approach by applying it to the key-switching procedure. Our experiments show that the new key-switching method achieves a speedup of 1.2--2.3 or 2.1--3.3 times over the previous method, when the dimension of a base ring is $2^{15}$ or $2^{16}$, respectively.
2023
CRYPTO
Toward Practical Lattice-based Proof of Knowledge from Hint-MLWE
Abstract
In the last decade, zero-knowledge proof of knowledge protocols have been extensively studied to achieve active security of various cryptographic protocols. However, the existing solutions simply seek zero-knowledge for both message and randomness, which is an overkill in many applications since protocols may remain secure even if some information about randomness is leaked to the adversary.
We develop this idea to improve the state-of-the-art proof of knowledge protocols for RLWE-based public-key encryption and BDLOP commitment schemes. In a nutshell, we present new proof of knowledge protocols without using noise flooding or rejection sampling which are provably secure under a computational hardness assumption, called Hint-MLWE. We also show an efficient reduction from Hint-MLWE to the standard MLWE assumption.
Our approach enjoys the best of two worlds because it has no computational overhead from repetition (abort) and achieves a polynomial overhead between the honest and proven languages. We prove this claim by demonstrating concrete parameters and compare with previous results. Finally, we explain how our idea can be further applied to other proof of knowledge providing advanced functionality.
2020
ASIACRYPT
Maliciously Secure Matrix Multiplication with Applications to Private Deep Learning
📺
Abstract
Computing on data in a manner that preserve the privacy is of growing importance. Multi-Party Computation (MPC) and Homomorphic Encryption (HE) are two cryptographic techniques for privacy-preserving computations. In this work, we have developed efficient UC-secure multiparty protocols for matrix multiplications and two-dimensional convolutions. We built upon the SPDZ framework and integrated the state-of-the-art HE algorithms for matrix multiplication. Our protocol achieved communication cost linear only in the input and output dimensions and not on the number of multiplication operations. We eliminate the ''triple sacrifice'' step of SPDZ to improve efficiency and simplify the zero-knowledge proofs. We implemented our protocols and benchmarked them against the SPDZ LowGear variant (Keller et al. Eurocrypt'18). For multiplying two square matrices of size 128, we reduced the communication cost from 1.54 GB to 12.46 MB, an improvement of over two orders of magnitude that only improves with larger matrix sizes. For evaluating all convolution layers of the ResNet-50 neural network, the communication reduces cost from 5 TB to 41 GB.
2019
EUROCRYPT
Improved Bootstrapping for Approximate Homomorphic Encryption
📺
Abstract
Since Cheon et al. introduced a homomorphic encryption scheme for approximate arithmetic (Asiacrypt ’17), it has been recognized as suitable for important real-life usecases of homomorphic encryption, including training of machine learning models over encrypted data. A follow up work by Cheon et al. (Eurocrypt ’18) described an approximate bootstrapping procedure for the scheme. In this work, we improve upon the previous bootstrapping result. We improve the amortized bootstrapping time per plaintext slot by two orders of magnitude, from $$\sim $$∼1 s to $$\sim $$∼0.01 s. To achieve this result, we adopt a smart level-collapsing technique for evaluating DFT-like linear transforms on a ciphertext. Also, we replace the Taylor approximation of the sine function with a more accurate and numerically stable Chebyshev approximation, and design a modified version of the Paterson-Stockmeyer algorithm for fast evaluation of Chebyshev polynomials over encrypted data.
2019
ASIACRYPT
Multi-Key Homomorphic Encryption from TFHE
Abstract
In this paper, we propose a Multi-Key Homomorphic Encryption (MKHE) scheme by generalizing the low-latency homomorphic encryption by Chillotti et al. (ASIACRYPT 2016). Our scheme can evaluate a binary gate on ciphertexts encrypted under different keys followed by a bootstrapping.The biggest challenge to meeting the goal is to design a multiplication between a bootstrapping key of a single party and a multi-key RLWE ciphertext. We propose two different algorithms for this hybrid product. Our first method improves the ciphertext extension by Mukherjee and Wichs (EUROCRYPT 2016) to provide better performance. The other one is a whole new approach which has advantages in storage, complexity, and noise growth.Compared to previous work, our construction is more efficient in terms of both asymptotic and concrete complexity. The length of ciphertexts and the computational costs of a binary gate grow linearly and quadratically on the number of parties, respectively. We provide experimental results demonstrating the running time of a homomorphic NAND gate with bootstrapping. To the best of our knowledge, this is the first attempt in the literature to implement an MKHE scheme.
Program Committees
- PKC 2022
- PKC 2020
Coauthors
- Hao Chen (3)
- Jung Hee Cheon (2)
- Ilaria Chillotti (2)
- Kyoohyung Han (1)
- Intak Hwang (1)
- Miran Kim (4)
- Andrey Kim (2)
- Duhyeong Kim (1)
- Hyesun Kwak (1)
- Dongwon Lee (2)
- Seonhong Min (1)
- Ilya Razenshteyn (1)
- Dragos Rotaru (1)
- Jinyeong Seo (3)
- Yongsoo Song (9)
- Sameer Wagh (1)