CryptoDB
Javier Silva
Publications
Year
Venue
Title
2023
CRYPTO
Revisiting cycles of pairing-friendly elliptic curves
Abstract
A recent area of interest in cryptography is recursive composition of proof systems. One of the approaches to make recursive composition efficient involves cycles of pairing-friendly elliptic curves of prime order. However, known constructions have very low embedding degrees. This entails large parameter sizes, which makes the overall system inefficient. In this paper, we explore 2-cycles composed of curves from families parameterized by polynomials, and show that such cycles do not exist unless a strong condition holds. As a consequence, we prove that no 2-cycles can arise from the known families, except for those cycles already known. Additionally, we show some general properties about cycles, and provide a detailed computation on the density of pairing-friendly cycles among all cycles.
2021
ASIACRYPT
Séta: Supersingular Encryption from Torsion Attacks
📺
Abstract
We present Séta, a new family of public-key encryption schemes with post-quantum security based on isogenies of supersingular elliptic curves.
It is constructed from a new family of trapdoor one-way functions, where the inversion algorithm uses Petit's so called \emph{torsion attacks} on SIDH to compute an isogeny between supersingular elliptic curves given an endomorphism of the starting curve and images of torsion points.
We prove the OW-CPA security of S\'eta and present an IND-CCA variant using the post-quantum OAEP transformation.
Several variants for key generation are explored together with their impact on the selection of parameters, such as the base prime of the scheme.
We furthermore formalise an ``uber'' isogeny assumption framework which aims to generalize computational isogeny problems encountered in schemes including SIDH, CSDIH, OSIDH and ours.
Finally, we carefully select parameters to achieve a balance between security and run-times and present experimental results from our implementation.
2020
JOFC
Identification Protocols and Signature Schemes Based on Supersingular Isogeny Problems
Abstract
We present signature schemes whose security relies on computational assumptions relating to isogeny graphs of supersingular elliptic curves. We give two schemes, both of them based on interactive identification protocols. The first identification protocol is due to De Feo, Jao and Plût. The second one, and the main contribution of the paper, makes novel use of an algorithm of Kohel, Lauter, Petit and Tignol for the quaternion version of the $$\ell $$ ℓ -isogeny problem, for which we provide a more complete description and analysis, and is based on a more standard and potentially stronger computational problem. Both identification protocols lead to signatures that are existentially unforgeable under chosen message attacks in the random oracle model using the well-known Fiat-Shamir transform, and in the quantum random oracle model using another transform due to Unruh. A version of the first signature scheme was independently published by Yoo, Azarderakhsh, Jalali, Jao and Soukharev. This is the full version of a paper published at ASIACRYPT 2017.
2019
PKC
Shorter Quadratic QA-NIZK Proofs
Abstract
Despite recent advances in the area of pairing-friendly Non-Interactive Zero-Knowledge proofs, there have not been many efficiency improvements in constructing arguments of satisfiability of quadratic (and larger degree) equations since the publication of the Groth-Sahai proof system (JoC’12). In this work, we address the problem of aggregating such proofs using techniques derived from the interactive setting and recent constructions of SNARKs. For certain types of quadratic equations, this problem was investigated before by González et al. (ASIACRYPT’15). Compared to their result, we reduce the proof size by approximately 50% and the common reference string from quadratic to linear, at the price of using less standard computational assumptions. A theoretical motivation for our work is to investigate how efficient NIZK proofs based on falsifiable assumptions can be. On the practical side, quadratic equations appear naturally in several cryptographic schemes like shuffle and range arguments.
2017
ASIACRYPT
Coauthors
- Marta Bellés Muñoz (1)
- Vanesa Daza (1)
- Luca De Feo (1)
- Tako Boris Fouotsa (1)
- Steven D. Galbraith (2)
- Alonso González (1)
- Cyprien Delpech de Saint Guilhem (1)
- Péter Kutas (1)
- Antonin Leroux (1)
- Christophe Petit (3)
- Zaira Pindado (1)
- Carla Ràfols (1)
- Javier Silva (5)
- Jorge Jiménez Urroz (1)
- Benjamin Wesolowski (1)