CryptoDB
Jiseung Kim
Publications
Year
Venue
Title
2021
PKC
Adventures in Crypto Dark Matter: Attacks and Fixes for Weak Pseudorandom Functions
📺
Abstract
A weak pseudorandom function (weak PRF) is one of the most important cryptographic primitives for its efficiency although it has lower security than a standard PRF.
Recently, Boneh et al. (TCC'18) introduced two types of new weak PRF candidates, which are called a basic Mod-2/Mod-3 and alternative Mod-2/Mod-3 weak PRF.
Both use the mixture of linear computations defined on different small moduli to satisfy conceptual simplicity, low complexity (depth-2 ${\sf ACC^0}$) and MPC friendliness. In fact, the new candidates are conjectured to be exponentially secure against any adversary that allows exponentially many samples, and a basic Mod-2/Mod-3 weak PRF is the only candidate that satisfies all features above. However, none of the direct attacks which focus on basic and alternative Mod-2/Mod-3 weak PRFs use their own structures.
In this paper, we investigate weak PRFs from two perspectives; attacks, fixes.
We first propose direct attacks for an alternative Mod-2/Mod-3 weak PRF and a basic Mod-2/Mod-3 weak PRF when a circulant matrix is used as a secret key.
For an alternative Mod-2/Mod-3 weak PRF, we prove that the adversary's advantage is at least $2^{-0.105n}$, where $n$ is the size of the input space of the weak PRF. Similarly, we show that the advantage of our heuristic attack to the weak PRF with a circulant matrix key is larger than $2^{-0.21n}$, which is contrary to the previous expectation that `structured secret key' does not affect the security of a weak PRF. Thus, for an optimistic parameter choice $n = 2\lambda$ for the security parameter $\lambda$, parameters should be increased to preserve $\lambda$-bit security when an adversary obtains exponentially many samples.
Next, we suggest a simple method for repairing two weak PRFs affected by our attack while preserving the
parameters.
2019
CRYPTO
Statistical Zeroizing Attack: Cryptanalysis of Candidates of BP Obfuscation over GGH15 Multilinear Map
📺
Abstract
We present a new cryptanalytic algorithm on obfuscations based on GGH15 multilinear map. Our algorithm, statistical zeroizing attack, directly distinguishes two distributions from obfuscation while it follows the zeroizing attack paradigm, that is, it uses evaluations of zeros of obfuscated programs.Our attack breaks the recent indistinguishability obfuscation candidate suggested by Chen et al. (CRYPTO’18) for the optimal parameter settings. More precisely, we show that there are two functionally equivalent branching programs whose CVW obfuscations can be efficiently distinguished by computing the sample variance of evaluations.This statistical attack gives a new perspective on the security of the indistinguishability obfuscations: we should consider the shape of the distributions of evaluation of obfuscation to ensure security.In other words, while most of the previous (weak) security proofs have been studied with respect to algebraic attack model or ideal model, our attack shows that this algebraic security is not enough to achieve indistinguishability obfuscation. In particular, we show that the obfuscation scheme suggested by Bartusek et al. (TCC’18) does not achieve the desired security in a certain parameter regime, in which their algebraic security proof still holds.The correctness of statistical zeroizing attacks holds under a mild assumption on the preimage sampling algorithm with a lattice trapdoor. We experimentally verify this assumption for implemented obfuscation by Halevi et al. (ACM CCS’17).
2018
CRYPTO
Cryptanalyses of Branching Program Obfuscations over GGH13 Multilinear Map from the NTRU Problem
📺
Abstract
In this paper, we propose cryptanalyses of all existing indistinguishability obfuscation (iO) candidates based on branching programs (BP) over GGH13 multilinear map for all recommended parameter settings. To achieve this, we introduce two novel techniques, program converting using NTRU-solver and matrix zeroizing, which can be applied to a wide range of obfuscation constructions and BPs compared to previous attacks. We then prove that, for the suggested parameters, the existing general-purpose BP obfuscations over GGH13 do not have the desired security. Especially, the first candidate indistinguishability obfuscation with input-unpartitionable branching programs (FOCS 2013) and the recent BP obfuscation (TCC 2016) are not secure against our attack when they use the GGH13 with recommended parameters. Previously, there has been no known polynomial time attack for these cases.Our attack shows that the lattice dimension of GGH13 must be set much larger than previous thought in order to maintain security. More precisely, the underlying lattice dimension of GGH13 should be set to $$n=\tilde{\varTheta }( \kappa ^2 \lambda )$$n=Θ~(κ2λ) to rule out attacks from the subfield algorithm for NTRU where $$\kappa $$κ is the multilinearity level and $$\lambda $$λ the security parameter.
Coauthors
- Jung Hee Cheon (3)
- Wonhee Cho (2)
- Minki Hhan (2)
- Jiseung Kim (3)
- Jeong Han Kim (1)
- Changmin Lee (2)