CryptoDB
Ngoc Khanh Nguyen
Publications
Year
Venue
Title
2024
EUROCRYPT
SLAP: Succinct Lattice-Based Polynomial Commitments from Standard Assumptions
Abstract
Recent works on lattice-based extractable polynomial commitments can be grouped into two classes: (i) non-interactive constructions that stem from the functional commitment by Albrecht, Cini, Lai, Malavolta and Thyagarajan (CRYPTO 2022), and (ii) lattice adaptations of the Bulletproofs protocol (S&P 2018). The former class enjoys security in the standard model, albeit a knowledge assumption is desired. In contrast, Bulletproof-like protocols can be made secure under falsifiable assumptions, but due to technical limitations regarding subtractive sets, they only offer inverse-polynomial soundness error. This issue becomes particularly problematic when transforming these protocols to the non-interactive setting using the Fiat-Shamir paradigm.
In this work, we propose the first lattice-based non-interactive extractable polynomial commitment scheme which achieves polylogarithmic proof size and verifier runtime (in the length of the committed message) under standard assumptions. At the core of our work lies a new tree-based commitment scheme, along with an efficient proof of polynomial evaluation inspired by FRI (ICALP 2018). Natively, the construction is secure under a “multi-instance version” of the Power-Ring BASIS assumption (Eprint 2023/846). We then base security on the Module-SIS assumption by introducing several re-randomisation techniques which can be of independent interest.
2024
CRYPTO
Polynomial Commitments from Lattices: Post-Quantum Security, Fast Verification and Transparent Setup
Abstract
Polynomial commitment scheme allows a prover to commit to a polynomial $f \in \ring[X]$ of degree $L$, and later prove that the committed function was correctly evaluated at a specified point $x$; in other words $f(x)=u$ for public $x,u \in \ring$. Most applications of polynomial commitments, e.g. succinct non-interactive arguments of knowledge (SNARKs), require that (i) both the commitment and evaluation proof are succinct (i.e., polylogarithmic in the degree $L$) - with the latter being efficiently verifiable, and (ii) no pre-processing step is allowed.
Surprisingly, as far as plausibly quantum-safe polynomial commitments are concerned, the currently most efficient constructions only rely on weak cryptographic assumptions, such as security of hash functions. Indeed, despite making use of the underlying algebraic structure, prior lattice-based polynomial commitments still seem to be much behind the hash-based ones. Moreover, security of the aforementioned lattice constructions against quantum adversaries was never formally discussed.
In this work, we bridge the gap and propose the first (asymptotically and concretely) efficient lattice-based polynomial commitment with transparent setup and post-quantum security. Our interactive variant relies on the standard (Module-)SIS problem, and can be made non-interactive in the random oracle model using Fiat-Shamir transformation. In addition, we equip the scheme with a knowledge soundness proof against quantum adversaries which can be of independent interest. In terms of concrete efficiency, for $L=2^{20}$ our scheme yields proofs of size $2$X smaller than the hash-based \textsf{FRI} commitment (Block et al., Asiacrypt 2023), and $60$X smaller than the very recent lattice-based construction by Albrecht et al. (Eprint 2023/1469).
2024
CRYPTO
Greyhound: Fast Polynomial Commitments from Lattices
Abstract
In this paper, we propose Greyhound, the first concretely efficient polynomial commitment scheme from standard lattice assumptions. At the core of our construction lies a simple three-round protocol for proving evaluations for polynomials of bounded degree N with verifier time complexity O(\sqrt{N}). By composing it with the LaBRADOR proof system (CRYPTO 2023), we obtain a succinct proof of polynomial evaluation (i.e. polylogarithmic in N) that admits a sublinear verifier runtime.
To highlight practicality of Greyhound, we provide implementation details including concrete sizes and runtimes. Notably, for large polynomials of degree at most N=2^{30}, the scheme produces evaluation proofs of size 53KB, which is more than 10^4 times smaller than the recent lattice-based framework, called SLAP (EUROCRYPT 2024), and around three orders of magnitude smaller than Ligero (CCS 2017) and Brakedown (CRYPTO 2023).
2024
JOFC
Lattice-Based Polynomial Commitments: Towards Asymptotic and Concrete Efficiency
Abstract
<jats:title>Abstract</jats:title><jats:p>Polynomial commitments schemes are a powerful tool that enables one party to commit to a polynomial <jats:italic>p</jats:italic> of degree <jats:italic>d</jats:italic>, and prove that the committed function evaluates to a certain value <jats:italic>z</jats:italic> at a specified point <jats:italic>u</jats:italic>, i.e. <jats:inline-formula><jats:alternatives><jats:tex-math>$$p(u) = z$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>p</mml:mi>
<mml:mo>(</mml:mo>
<mml:mi>u</mml:mi>
<mml:mo>)</mml:mo>
<mml:mo>=</mml:mo>
<mml:mi>z</mml:mi>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>, without revealing any additional information about the polynomial. Recently, polynomial commitments have been extensively used as a cryptographic building block to transform polynomial interactive oracle proofs (PIOPs) into efficient succinct arguments. In this paper, we propose a lattice-based polynomial commitment that achieves succinct proof size and verification time in the degree <jats:italic>d</jats:italic> of the polynomial. Extractability of our scheme holds in the random oracle model under a natural ring version of the BASIS assumption introduced by Wee and Wu (EUROCRYPT 2023). Unlike recent constructions of polynomial commitments by Albrecht et al. (CRYPTO 2022), and by Wee and Wu, we do not require any expensive preprocessing steps, which makes our scheme particularly attractive as an ingredient of a PIOP compiler for succinct arguments. We further instantiate our polynomial commitment, together with the PIOP (EUROCRYPT 2020), to obtain a publicly-verifiable trusted-setup succinct argument for Rank-1 Constraint System (R1CS). Performance-wise, we achieve <jats:inline-formula><jats:alternatives><jats:tex-math>$$17$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mn>17</mml:mn>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>MB proof size for <jats:inline-formula><jats:alternatives><jats:tex-math>$$2^{20}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msup>
<mml:mn>2</mml:mn>
<mml:mn>20</mml:mn>
</mml:msup>
</mml:math></jats:alternatives></jats:inline-formula> constraints, which is <jats:inline-formula><jats:alternatives><jats:tex-math>$$15$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mn>15</mml:mn>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>X smaller than currently the only publicly-verifiable lattice-based SNARK proposed by Albrecht et al.</jats:p>
2024
ASIACRYPT
RoK, Paper, SISsors – Toolkit for Lattice-based Succinct Arguments
Abstract
Lattice-based succinct arguments allow to prove bounded-norm satisfiability of relations, such as $f(\mathbf{s}) = \mathbf{t} \bmod q$ and $\|\mathbf{s}\|\leq \beta$, over specific cyclotomic rings $\mathcal{O}_\mathcal{K}$, with proof size polylogarithmic in the witness size. However, state-of-the-art protocols require either 1) a super-polynomial size modulus $q$ due to a soundness gap in the security argument, or 2) a verifier which runs in time linear in the witness size. Furthermore, construction techniques often rely on specific choices of $\mathcal{K}$ which are not mutually compatible. In this work, we exhibit a diverse toolkit for constructing efficient lattice-based succinct arguments:
\begin{enumerate}
\item We identify new subtractive sets for general cyclotomic fields $\mathcal{K}$ and their maximal real subfields $\mathcal{K}^+$, which are useful as challenge sets, e.g. in arguments for exact norm bounds.
\item We construct modular, verifier-succinct reductions of knowledge for the bounded-norm satisfiability of structured-linear/inner-product relations, without any soundness gap, under the vanishing SIS assumption, over any $\mathcal{K}$ which admits polynomial-size subtractive sets.
\item We propose a framework to use twisted trace maps, i.e. maps of the form $\tau(z) = \frac{1}{N} \cdot \mathsf{Trace}_{\mathcal{K}/\mathbb{Q}}( \alpha \cdot z )$, to embed $\mathcal{R}$-inner-products as $\mathcal{R}$-inner-products for some structured subrings $\mathcal{R} \subseteq \mathcal{O}_\mathcal{K}$ whenever the conductor has a square-free odd part.
\item We present a simple extension of our reductions of knowledge for proving the consistency between the coefficient embedding and the Chinese Remainder Transform (CRT) encoding of $\vec{s}$ over any cyclotomic field $\mathcal{K}$ with a smooth conductor, based on a succinct decomposition of the CRT map into automorphisms, and a new, simple succinct argument for proving automorphism relations.
\end{enumerate}
Combining all techniques, we obtain, for example, verifier-succinct arguments for proving that $\vec{s}$ satisfying $f(\mathbf{s}) = \mathbf{t} \bmod q$ has binary coefficients, without soundness gap and with polynomial-size modulus $q$.
2024
ASIACRYPT
Lova: Lattice-Based Folding Scheme from Unstructured Lattices
Abstract
Folding schemes (Kothapalli et al., CRYPTO 2022) are a conceptually simple, yet powerful cryptographic primitive that can be used as a building block to realise incrementally verifiable computation (IVC) with low recursive overhead without general-purpose non-interactive succinct arguments of knowledge (SNARK).
Most folding schemes known rely on the hardness of the discrete logarithm problem, and thus are
both not quantum-resistant and operate over large prime fields. Existing post-quantum folding schemes (Boneh, Chen, ePrint 2024/257) based on lattice assumptions instead are secure under structured lattice assumptions, such as the Module Short Integer Solution Assumption (MSIS), which also binds them to relatively complex arithmetic.
In contrast, we construct Lova, the first folding scheme whose security relies on the
(unstructured) SIS assumption. We provide a Rust implementation of Lova, which makes only use of arithmetic in hardware-friendly power-of-two moduli. Crucially, this avoids the need of implementing and performing any finite field arithmetic. At the core of our results lies a new exact Euclidean norm proof which might be of independent interest
2023
CRYPTO
A Framework for Practical Anonymous Credentials from Lattices
Abstract
We present a framework for building practical anonymous credential schemes based on the hardness of lattice problems. The running time of the prover and verifier is independent of the number of users and linear in the number of attributes. The scheme is also compact in practice, with the proofs being as small as a few dozen kilobytes for arbitrarily large (say up to $2^{128}$) users with each user having several attributes. The security of our scheme is based on a new family of lattice assumptions which roughly states that given short pre-images of random elements in some set $S$, it is hard to create a pre-image for a fresh element in such a set. We show that if the set admits efficient zero-knowledge proofs of knowledge of a commitment to a set element and its pre-image, then this yields practically-efficient privacy-preserving primitives such as blind signatures, anonymous credentials, and group signatures. We propose a candidate instantiation of a function from this family which allows for such proofs and thus yields practical lattice-based primitives.
2022
PKC
Efficient Lattice-Based Blind Signatures via Gaussian One-Time Signatures
📺
Abstract
Lattice-based blind signature schemes have been receiving some recent attention lately. Earlier efficient 3-round schemes (Asiacrypt 2010, Financial Cryptography 2020) were recently shown to have mistakes in their proofs, and fixing them turned out to be extremely inefficient and limited the number of signatures that a signer could send to less than a dozen (Crypto 2020). In this work we propose a round-optimal, 2-round lattice-based blind signature scheme which produces signatures of length 150KB. The running time of the signing protocol is linear in the maximum number signatures that can be given out, and this limits the number of signatures that can be signed per public key. Nevertheless, the scheme is still quite efficient when the number of signatures is limited to a few dozen thousand, and appears to currently be the most efficient lattice-based candidate.
2022
PKC
Lifting Standard Model Reductions to Common Setup Assumptions
📺
Abstract
In this paper we show that standard model black-box reductions naturally lift to various setup assumptions, such as the random oracle (ROM) or ideal cipher model.
Concretely, we prove that a black-box reduction from a security notion $P$ to security notion $Q$ in the standard model can be turned into a non-programmable black-box reduction from $P_\oracle$ to $Q_\oracle$ in a model with a setup assumption $\oracle$, where $P_\oracle$ and $Q_\oracle$ are the natural extensions of $P$ and $Q$ to a model with a setup assumption $\oracle$.
Our results rely on a generalization of the recent framework by Hofheinz and Nguyen (PKC 2019) to support primitives which make use of a trusted setup. Our framework encompasses standard idealized settings like the random oracle and the ideal cipher model.
At the core of our main result lie novel properties of negligible functions that can be of independent interest.
2022
CRYPTO
Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General
📺
Abstract
We present a much-improved practical protocol, based on the hardness of Module-SIS and Module-LWE problems, for proving knowledge of a short vector $s$ satisfying $As=t\bmod q$. The currently most-efficient technique for constructing such a proof works by showing that the $\ell_\infty$ norm of $s$ is small. It creates a commitment to a polynomial vector $m$ whose CRT coefficients are the coefficients of $s$ and then shows that (1) $A\cdot \mathsf{CRT}(m)=t\bmod\,q$ and (2) in the case that we want to prove that the $\ell_\infty$ norm is at most $1$, the polynomial product $(m - 1)\cdot m\cdot(m+1)$ equals to $0$. While these schemes are already quite efficient for practical applications, the requirement of using the CRT embedding and only being naturally adapted to proving the $\ell_\infty$-norm, hinders the efficiency of this approach.
In this work, we show that there is a direct and efficient way to prove that the coefficients of $s$ have a small $\ell_2$ norm which does not require an equivocation with the $\ell_\infty$ norm, nor any conversion to the CRT representation. We observe that the inner product between two vectors $ r$ and $s$ can be made to appear as a coefficient of a product (or sum of products) between polynomials which are functions of $r$ and $s$. Thus, by using a polynomial product proof system and hiding all but one coefficient, we are able to prove knowledge of the inner product of two vectors modulo $q$. Using a cheap, approximate range proof, one can then lift the proof to be over $\mathbb{Z}$ instead of $\mathbb{Z}_q$. Our protocols for proving short norms work over all (interesting) polynomial rings, but are particularly efficient for rings like $\mathbb{Z}[X]/(X^n+1)$ in which the function relating the inner product of vectors and polynomial products happens to be a ``nice'' automorphism.
The new proof system can be plugged into constructions of various lattice-based privacy primitives in a black-box manner. As examples, we instantiate a verifiable encryption scheme and a group signature scheme which are more than twice as compact as the previously best solutions.
2022
CRYPTO
Practical Sublinear Proofs for R1CS from Lattices
📺
Abstract
We propose a practical sublinear-size zero-knowledge proof system for Rank-1 Constraint Satisfaction (R1CS) based on lattices. The proof size scales asymptotically with the square root of the witness size. Concretely, the size becomes 2-3 times smaller than Ligero (ACM CCS 2017), which also exhibits square root scaling, for large instances of R1CS. At the core lies an interactive variant of the Schwartz-Zippel Lemma that might be of independent interest.
2022
ASIACRYPT
BLOOM: Bimodal Lattice One-Out-of-Many Proofs and Applications
📺
Abstract
We give a construction of an efficient one-out-of-many proof system, in which a prover shows that he knows the pre-image for one element in a set, based on the hardness of lattice problems. The construction employs the recent zero-knowledge framework of Lyubashevsky et al. (Crypto 2022) together with an improved, over prior lattice-based one-out-of-many proofs, recursive procedure, and a novel rejection sampling proof that allows to use the efficient bimodal rejection sampling throughout the protocol.
Using these new primitives and techniques, we give instantiations of the most compact lattice-based ring and group signatures schemes. The improvement in signature sizes over prior works ranges between $25\%$ and $2$X. Perhaps of even more significance, the size of the user public keys, which need to be stored somewhere publicly accessible in order for ring signatures to be meaningful, is reduced by factors ranging from $7$X to $15$X. In what could be of independent interest, we also provide noticeably improved proofs for integer relations which, together with one-out-of-many proofs are key components of confidential payment systems.
2021
ASIACRYPT
Shorter Lattice-Based Group Signatures via ``Almost Free'' Encryption and Other Optimizations
📺
Abstract
We present an improved lattice-based group signature scheme whose parameter sizes and running times are independent of the group size. The signature length in our scheme is around $200$KB, which is approximately a $3$X reduction over the previously most compact such scheme, based on any quantum-safe assumption, of del Pino et al. (CCS 2018). The improvement comes via several optimizations of some basic cryptographic components that make up group signature schemes, and we think that they will find other applications in privacy-based lattice cryptography.
2021
PKC
Shorter Lattice-Based Zero-Knowledge Proofs via One-Time Commitments
📺
Abstract
There has been a lot of recent progress in constructing efficient zero-knowledge proofs for showing knowledge of an $\vec{\bm{s}}$ with small coefficients satisfying $\bm{A}\vec{\bm{s}}=\vec{\bm{t}}$. For typical parameters, the proof sizes have gone down from several megabytes to a bit under $50$KB (Esgin et al., Asiacrypt 2020). These are now within an order of magnitude of the sizes of lattice-based signatures, which themselves constitute proof systems which demonstrate knowledge of something weaker than the aforementioned equation. One can therefore see that this line of research is approaching optimality. In this paper, we modify a key component of these proofs, as well as apply several other tweaks, to achieve a further reduction of around $30\%$ in the proof output size. We also show that this savings propagates itself when these proofs are used in a general framework to construct more complex protocols.
2021
CRYPTO
SMILE: Set Membership from Ideal Lattices with Applications to Ring Signatures and Confidential Transactions
📺
Abstract
In a set membership proof, the public information consists of a set of elements and a commitment. The prover then produces a zero-knowledge proof showing that the commitment is indeed to some element from the set. This primitive is closely related to concepts like ring signatures and ``one-out-of-many'' proofs that underlie many anonymity and privacy protocols. The main result of this work is a new succinct lattice-based set membership proof whose size is logarithmic in the size of the set.
We also give transformations of our set membership proof to a ring signature scheme and to a confidential transaction payment system. The ring signature size is also logarithmic in the size of the public key set and has size $16$~KB for a set of $2^5$ elements, and $22$~KB for a set of size $2^{25}$. At an approximately $128$-bit security level, these outputs are between 1.5X and 7X smaller than the current state of the art succinct ring signatures of Beullens et al. (Asiacrypt 2020) and Esgin et al. (CCS 2019).
We then show that our ring signature, combined with a few other techniques and optimizations, can be turned into a fairly efficient Monero-like confidential transaction system based on the MatRiCT framework of Esgin et al. (CCS 2019). With our new techniques, we are able to reduce the transaction proof size by factors of about 4X - 10X over the aforementioned work. For example, a transaction with two inputs and two outputs, where each input is hidden among $2^{15}$ other accounts, requires approximately $30$KB in our protocol.
2020
CRYPTO
A non-PCP Approach to Succinct Quantum-Safe Zero-Knowledge
📺
Abstract
Today's most compact zero-knowledge arguments are based on the hardness of the discrete logarithm problem and related classical assumptions. If one is interested in quantum-safe solutions, then all of the known techniques stem from the PCP-based framework of Kilian (STOC 92) which can be instantiated based on the hardness of any collision-resistant hash function. Both approaches produce asymptotically logarithmic sized arguments but, by exploiting extra algebraic structure, the discrete logarithm arguments are a few orders of magnitude more compact in practice than the generic constructions.\\
In this work, we present the first (poly)-logarithmic \emph{post-quantum} zero-knowledge arguments that deviate from the PCP approach. At the core of succinct zero-knowledge proofs are succinct commitment schemes (in which the commitment and the opening proof are sub-linear in the message size), and we propose two such constructions based on the hardness of the (Ring)-Short Integer Solution (Ring-SIS) problem, each having certain trade-offs. For commitments to $N$ secret values, the communication complexity of our first scheme is $\tilde{O}(N^{1/c})$ for any positive integer $c$, and $O(\log^2 N)$ for the second. %Both of our protocols have somewhat large \emph{slack}, which in lattice constructions is the ratio of the norm of the extracted secrets to the norm of the secrets that the honest prover uses in the proof. The lower this factor, the smaller we can choose the practical parameters. For a fixed value of this factor, our $\tilde{O}(N^{1/c})$-argument actually achieves lower communication complexity.
Both of these are a significant theoretical improvement over the previously best lattice construction by Bootle et al. (CRYPTO 2018) which gave $O(\sqrt{N})$-sized proofs.
2020
CRYPTO
Lattice-Based Blind Signatures, Revisited
📺
Abstract
We observe that all previously known lattice-based blind signatures schemes contain subtle flaws in their security proofs (e.g.,~Rückert, ASIACRYPT '08) or can be attacked (e.g., BLAZE by Alkadri et al., FC~'20). Motivated by this, we revisit the problem of constructing blind signatures from standard lattice assumptions. We propose a new three-round lattice-based blind signature scheme whose security can be proved, in the random oracle model, from the standard SIS assumption. Our starting point is a modified version of the insecure three-round BLAZE scheme, which itself is based Lyubashevsky's three-round identification scheme combined with a new aborting technique to reduce the correctness error. Our proof builds upon and extends the recent modular framework for blind signatures of Hauck, Kiltz, and Loss (EUROCRYPT~'19). It also introduces several new techniques to overcome the additional challenges posed by the correctness error which is inherent to all lattice-based constructions.
While our construction is mostly of theoretical interest, we believe it to be an important stepping stone for future works in this area.
2020
ASIACRYPT
Practical Exact Proofs from Lattices: New Techniques to Exploit Fully-Splitting Rings
📺
Abstract
We propose a lattice-based zero-knowledge proof system for exactly proving knowledge of a ternary solution $\vec{s} \in \{-1,0,1\}^n$ to a linear equation $A\vec{s}=\vec{u}$ over $\mathbb{Z}_q$, which improves upon the protocol by Bootle, Lyubashevsky and Seiler (CRYPTO 2019) by producing proofs that are shorter by a factor of $7.5$.
At the core lies a technique that utilizes the module-homomorphic BDLOP commitment scheme (SCN 2018) over the fully splitting cyclotomic ring $\mathbb{Z}_q[X]/(X^d + 1)$ to prove scalar products with the NTT vector of a secret polynomial.
2019
PKC
On Tightly Secure Primitives in the Multi-instance Setting
Abstract
We initiate the study of general tight reductions in cryptography. There already exist a variety of works that offer tight reductions for a number of cryptographic tasks, ranging from encryption and signature schemes to proof systems. However, our work is the first to provide a universal definition of a tight reduction (for arbitrary primitives), along with several observations and results concerning primitives for which tight reductions have not been known.Technically, we start from the general notion of reductions due to Reingold, Trevisan, and Vadhan (TCC 2004), and equip it with a quantification of the respective reduction loss, and a canonical multi-instance extension to primitives. We then revisit several standard reductions whose tight security has not yet been considered. For instance, we revisit a generic construction of signature schemes from one-way functions, and show how to tighten the corresponding reduction by assuming collision-resistance from the used one-way function. We also obtain tightly secure pseudorandom generators (by using suitable rerandomisable hard-core predicates), and tightly secure lossy trapdoor functions.
2019
ASIACRYPT
On the Non-existence of Short Vectors in Random Module Lattices
Abstract
Recently, Lyubashevsky & Seiler (Eurocrypt 2018) showed that small polynomials in the cyclotomic ring $$\mathbb {Z}_q[X]/(X^n+1)$$, where n is a power of two, are invertible under special congruence conditions on prime modulus q. This result has been used to prove certain security properties of lattice-based constructions against unbounded adversaries. Unfortunately, due to the special conditions, working over the corresponding cyclotomic ring does not allow for efficient use of the Number Theoretic Transform (NTT) algorithm for fast multiplication of polynomials and hence, the schemes become less practical.In this paper, we present how to overcome this limitation by analysing zeroes in the Chinese Remainder (or NTT) representation of small polynomials. As a result, we provide upper bounds on the probabilities related to the (non)-existence of a short vector in a random module lattice with no assumptions on the prime modulus. We apply our results, along with the generic framework by Kiltz et al. (Eurocrypt 2018), to a number of lattice-based Fiat-Shamir signatures so they can both enjoy tight security in the quantum random oracle model and support fast multiplication algorithms (at the cost of slightly larger public keys and signatures), such as the Bai-Galbraith signature scheme (CT-RSA 2014), $$\mathsf {Dilithium\text {-}QROM}$$ (Kiltz et al., Eurocrypt 2018) and $$\mathsf {qTESLA}$$ (Alkim et al., PQCrypto 2017). Our techniques can also be applied to prove that recent commitment schemes by Baum et al. (SCN 2018) are statistically binding with no additional assumptions on q.
Program Committees
- Eurocrypt 2023
Coauthors
- Martin R. Albrecht (1)
- Jonathan Bootle (2)
- Valerio Cini (1)
- Muhammed F. Esgin (1)
- Giacomo Fenzi (3)
- Eduard Hauck (1)
- Dennis Hofheinz (1)
- Eike Kiltz (1)
- Michael Klooß (1)
- Christian Knabenhans (1)
- Russell W. F. Lai (1)
- Oleksandra Lapiha (1)
- Julian Loss (1)
- Vadim Lyubashevsky (8)
- Giulio Malavolta (1)
- Hossein Moghaddas (1)
- Ngoc Khanh Nguyen (20)
- Michał Osadnik (1)
- Duc Tu Pham (1)
- Maxime Plançon (3)
- Gregor Seiler (7)
- Alessandro Sorniotti (1)
- Eftychios Theodorakis (1)
- Bogdan Warinschi (1)
- Hoeteck Wee (1)