International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Michele Orrù

Publications

Year
Venue
Title
2024
CRYPTO
Oblivious issuance of proofs
We consider the problem of creating, or issuing, zero-knowledge proofs {\em obliviously}. In this setting, a prover interacts with a verifier to produce a proof, known only to the verifier. The resulting proof is transferrable and can be verified non-interactively by anyone. Crucially, the actual proof cannot be linked back to the interaction that produced it. This notion generalizes common approaches to designing blind signatures, which can be seen as the special case of proving ``knowledge of a signing key'', and extends the seminal work of Camenisch and Stadler ('97). We propose a provably secure construction of oblivious proofs, focusing on discrete-logarithm representation equipped with AND-composition. We also give three applications of our framework. First, we give a publicly verifiable version of the classical Diffie-Hellman based Oblivious PRF. This yields new constructions of blind signatures and publicly verifiable anonymous tokens. Second, we show how to "upgrade" keyed-verification anonymous credentials (Chase et al., CCS'14) to also be concurrently secure blind signatures on the same set of attributes. Crucially, our upgrade maintains the performance and functionality of the credential in the keyed-verification setting, we only change issuance. We observe that the existing issuer proof that the credential is well-formed may be verified by anyone; creating it with our framework makes it a blind signature, adding public verifiability to the credential system. Finally, we provide a variation of the U-Prove credential system that is provably one-more unforgeable with concurrent issuance sessions. This constitutes a fix for the attack illustrated by Benhamouda et al. (EUROCRYPT'21). Beyond these example applications, as our results are quite general, we expect they may enable modular design of new primitives with concurrent security, a goal that has historically been challenging to achieve.
2022
EUROCRYPT
Gemini: elastic SNARKs for diverse environments 📺
We introduce a new class of succinct arguments, that we call elastic. Elastic SNARKs allow the prover to allocate different resources (such as memory and time) depending on the execution environment and the statement to prove. The resulting output is independent of the prover’s configuration. To study elastic SNARKs, we extend the streaming paradigm of [Block et al., TCC’20]. We provide a definitional framework for elastic polynomial interactive oracle proofs for R1CS instances and design a compiler which transforms an elastic PIOP into a preprocessing argument system that supports streaming or random access to its inputs. Depending on the configuration, the prover will choose different trade-offs for time (either linear, or quasilinear) and memory (either linear, or logarithmic). We prove the existence of elastic SNARKS by presenting Gemini, a novel FFT-free preprocessing argument. We prove its security and develop a proof-of-concept implementation in Rust based on the arkworks framework. We provide benchmarks for large R1CS instances of tens of billions of gates on a single machine.
2022
ASIACRYPT
Non-interactive Mimblewimble transactions, revisited 📺
Georg Fuchsbauer Michele Orrù
Mimblewimble is a cryptocurrency protocol that promises to overcome notorious blockchain scalability issues and provides user privacy. For a long time its wider adoption has been hindered by the lack of non-interactive transactions, that is, payments for which only the sender needs to be online. Yu proposed a way of adding non-interactive transactions to stealth addresses to Mimblewimble, but this turned out to be flawed. Building on Yu and integrating ideas from Burkett, we give a fixed scheme and provide a rigorous security analysis strenghtening the previous security model from Eurocrypt'19. Our protocol is considered for implementation by MimbleWimbleCoin and a variant is now deployed as MimbleWimble Extension Blocks (MWEB) in Litecoin.
2022
JOFC
On the (in)Security of ROS
We present an algorithm solving the ROS ( R andom inhomogeneities in a O verdetermined S olvable system of linear equations) problem mod p in polynomial time for $$\ell > \log p$$ ℓ > log p dimensions. Our algorithm can be combined with Wagner’s attack, and leads to a sub-exponential solution for any dimension $$\ell $$ ℓ with the best complexity known so far. When concurrent executions are allowed, our algorithm leads to practical attacks against unforgeability of blind signature schemes such as Schnorr and Okamoto–Schnorr blind signatures, threshold signatures such as GJKR and the original version of FROST, multisignatures such as CoSI and the two-round version of MuSig, partially blind signatures such as Abe–Okamoto, and conditional blind signatures such as ZGP17. Schemes for e-cash (such as Brands’ signature) and anonymous credentials (such as Anonymous Credentials Light) inspired from the above are also affected.
2021
EUROCRYPT
On the (in)security of ROS
We present an algorithm solving the ROS (Random inhomogeneities in a Overdetermined Solvable system of linear equations) problem mod p in polynomial time for $l > log p$ dimensions. Our algorithm can be combined with Wagner's attack, and leads to a sub-exponential solution for any dimension $l$ with best complexity known so far. When concurrent executions are allowed, our algorithm leads to practical attacks against unforgeability of blind signature schemes such as Schnorr and Okamoto--Schnorr blind signatures, threshold signatures such as GJKR and the original version of FROST, multisignatures such as CoSI and the two-round version of MuSig, partially blind signatures such as Abe--Okamoto, and conditional blind signatures such as ZGP17. Schemes for e-cash and anonymous credentials (such as Anonymous Credentials Light) inspired from the above are also affected.
2020
CRYPTO
Anonymous Tokens with Private Metadata Bit 📺
We present a cryptographic construction for anonymous tokens with private metadata bit, called PMBTokens. This primitive enables an issuer to provide a user with a lightweight, single-use anonymous trust token that can embed a single private bit, which is accessible only to the party who holds the secret authority key and is private with respect to anyone else. Our construction generalizes and extends the functionality of Privacy Pass (PETS’18) with this private metadata bit capability. It provides unforgeability, unlinkability, and privacy for the metadata bit properties based on the DDH and CTDH assumptions in the random oracle model. Both Privacy Pass and PMBTokens rely on non-interactive zero-knowledge proofs (NIZKs). We present new techniques to remove the need for NIZKs, while still achieving unlinkability. We implement our constructions and we report their efficiency costs.
2019
EUROCRYPT
Aggregate Cash Systems: A Cryptographic Investigation of Mimblewimble 📺
Mimblewimble is an electronic cash system proposed by an anonymous author in 2016. It combines several privacy-enhancing techniques initially envisioned for Bitcoin, such as Confidential Transactions (Maxwell, 2015), non-interactive merging of transactions (Saxena, Misra, Dhar, 2014), and cut-through of transaction inputs and outputs (Maxwell, 2013). As a remarkable consequence, coins can be deleted once they have been spent while maintaining public verifiability of the ledger, which is not possible in Bitcoin. This results in tremendous space savings for the ledger and efficiency gains for new users, who must verify their view of the system.In this paper, we provide a provable-security analysis for Mimblewimble. We give a precise syntax and formal security definitions for an abstraction of Mimblewimble that we call an aggregate cash system. We then formally prove the security of Mimblewimble in this definitional framework. Our results imply in particular that two natural instantiations (with Pedersen commitments and Schnorr or BLS signatures) are provably secure against inflation and coin theft under standard assumptions.