CryptoDB
Boxin Zhao
Publications
Year
Venue
Title
2024
CRYPTO
Generic MitM Attack Frameworks on Sponge Constructions
Abstract
This paper proposes general meet-in-the-middle (MitM) attack frameworks for preimage and collision attacks on hash functions based on (generalized) sponge construction.
As the first contribution, our MitM preimage attack framework covers a wide range of sponge-based hash functions, especially those with lower claimed security level for preimage compared to their output size. Those hash functions have been very widely standardized (e.g., {\tt Ascon-Hash}, {\tt PHOTON}, etc.), but are rarely studied against preimage attacks. Even the recent MitM attack framework on sponge construction by Qin et al. (EUROCRYPT 2023) cannot attack those hash functions. As the second contribution, our MitM collision attack framework shows a different tool for the collision cryptanalysis on sponge construction, while previous collision attacks on sponge construction are mainly based on differential attacks.
Most of the results in this paper are the first third-party cryptanalysis results. If cryptanalysis previously existed, our new results significantly improve the previous results, such as improving the previous 2-round collision attack on {\tt Ascon-Hash} to the current 4 rounds, improving the previous 3.5-round quantum preimage attack on SPHINCS$^+$-{\tt Haraka} to our 4-round classical preimage attack, etc.
2019
TOSC
New Related-Tweakey Boomerang and Rectangle Attacks on Deoxys-BC Including BDT Effect
📺
Abstract
In the CAESAR competition, Deoxys-I and Deoxys-II are two important authenticated encryption schemes submitted by Jean et al. Recently, Deoxys-II together with Ascon, ACORN, AEGIS-128, OCB and COLM have been selected as the final CAESAR portfolio. Notably, Deoxys-II is also the primary choice for the use case “Defense in depth”. However, Deoxys-I remains to be one of the third-round candidates of the CAESAR competition. Both Deoxys-I and Deoxys-II adopt Deoxys-BC-256 and Deoxys-BC-384 as their internal tweakable block ciphers.In this paper, we investigate the security of round-reduced Deoxys-BC-256/-384 and Deoxys-I against the related-tweakey boomerang and rectangle attacks with some new boomerang distinguishers. For Deoxys-BC-256, we present 10-round related-tweakey boomerang and rectangle attacks for the popular setting (|tweak|, |key|) = (128, 128), which reach one more round than the previous attacks in this setting. Moreover, an 11-round related-tweakey rectangle attack on Deoxys-BC-256 is given for the first time. We also put forward a 13-round related-tweakey boomerang attack in the popular setting (|tweak|, |key|) = (128, 256) for Deoxys-BC-384, while the previous attacks in this setting only work for 12 rounds at most. In addition, the first 14-round relatedtweakey rectangle attack on Deoxys-BC-384 is given when (|tweak| < 98, |key| > 286), that attacks one more round than before. Besides, we give the first 10-round rectangle attack on the authenticated encryption mode Deoxys-I-128-128 with one more round than before, and we also reduce the complexity of the related-tweakey rectangle attack on 12-round Deoxys-I-256-128 by a factor of 228. Our attacks can not be applied to (round-reduced) Deoxys-II.
Coauthors
- Xiaoyang Dong (2)
- Qingliang Hou (1)
- Keting Jia (1)
- Lingyue Qin (1)
- Xiaoyun Wang (1)
- Shun Zhang (1)
- Boxin Zhao (2)