International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Devika Sharma

Publications

Year
Venue
Title
2024
PKC
On Algebraic Embedding for Unstructured Lattices
Lattice-based cryptography, the study of cryptographic primitives whose security is based on the hardness of so-called lattice problems, has taken center stage in cryptographic research in recent years. It potentially offers favorable security features, even against quantum algorithms. One of the main obstacles for wide adoption of this type of cryptography is its unsatisfactory efficiency. To address this point, efficient lattice-based cryptography usually relies on the intractability of problems on lattices with additional algebraic structure (such as so-called ideal-lattices or module-lattices). It is an important open question to evaluate the hardness of such lattice problems, and their relation to the hardness of problems on unstructured lattices. It is a known fact that an unstructured lattice, which is simply an additive discrete group in Euclidean space, can be cast as an ideal-lattice in some \emph{order} of a number field (and thus, in a rather trivial sense, that ideals in orders are as general as unstructured lattices). However, it is not known whether this connection can be used to imply useful hardness results for structured lattices, or alternatively new algorithmic techniques for unstructured lattices. In this work we establish a gradient of hardness for the Order-LWE problem (a generalization of the well known Ring-LWE problem), as it varies over orders in a number field. Furthermore, we show that, in every number field, there are certain orders such that the corresponding Order-LWE problem is at least as hard as the (unstructured) LWE problem. So in general one should not hope to solve (any) Order-LWE more efficiently than LWE. However, we show that this connection holds in orders that are very ``skewed'' and hence, perhaps, irrelevant for improving efficiency in cryptographic applications. We further improve the hardness result for Order-LWE, to include \textit{all} ideal lattices, closing a gap left in prior work. This establishes a direct connection between problems on unstructured lattices and the structured problem of Order-LWE.
2019
ASIACRYPT
Order-LWE and the Hardness of Ring-LWE with Entropic Secrets
We propose a generalization of the celebrated Ring Learning with Errors (RLWE) problem (Lyubashevsky, Peikert and Regev, Eurocrypt 2010, Eurocrypt 2013), wherein the ambient ring is not the ring of integers of a number field, but rather an order (a full rank subring). We show that our Order-LWE problem enjoys worst-case hardness with respect to short-vector problems in invertible-ideal lattices of the order.The definition allows us to provide a new analysis for the hardness of the abundantly used Polynomial-LWE (PLWE) problem (Stehlé et al., Asiacrypt 2009), different from the one recently proposed by Rosca, Stehlé and Wallet (Eurocrypt 2018). This suggests that Order-LWE may be used to analyze and possibly design useful relaxations of RLWE.We show that Order-LWE can naturally be harnessed to prove security for RLWE instances where the “RLWE secret” (which often corresponds to the secret-key of a cryptosystem) is not sampled uniformly as required for RLWE hardness. We start by showing worst-case hardness even if the secret is sampled from a subring of the sample space. Then, we study the case where the secret is sampled from an ideal of the sample space or a coset thereof (equivalently, some of its CRT coordinates are fixed or leaked). In the latter, we show an interesting threshold phenomenon where the amount of RLWE noise determines whether the problem is tractable.Lastly, we address the long standing question of whether high-entropy secret is sufficient for RLWE to be intractable. Our result on sampling from ideals shows that simply requiring high entropy is insufficient. We therefore propose a broad class of distributions where we conjecture that hardness should hold, and provide evidence via reduction to a concrete lattice problem.