International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Wenying Zhang

Publications

Year
Venue
Title
2020
TOSC
Improved Security Evaluation of SPN Block Ciphers and its Applications in the Single-key Attack on SKINNY 📺
In this paper, a new method for evaluating the integral property, truncated and impossible differentials for substitution-permutation network (SPN) block ciphers is proposed. The main assumption is an explicit description/expression of the internal state words in terms of the plaintext (ciphertext) words. By counting the number of times these words occur in the internal state expression, we can evaluate the resistance of a given block cipher to integral and impossible/truncated differential attacks more accurately than previous methods. More precisely, we explore the cryptographic consequences of uneven frequency of occurrences of plaintext (ciphertext) words appearing in the algebraic expression of the internal state words. This approach gives a new family of distinguishers employing different concepts such as the integral property, impossible/truncated differentials and the so-called zero-sum property. We then provide algorithms to determine the maximum number of rounds of such new types of distinguishers for SPN block ciphers. The potential and efficiency of this relatively simple method is confirmed through applications. For instance, in the case of SKINNY block cipher, several 10-round integral distinguishers, all of the 11-round impossible differentials, and a 7-round truncated differential could be determined. For the last case, using a single pair of plaintexts differing in three words so that (a = b = c) ≠ (a’ = b’ = c’), we are able to distinguish 7-round SKINNY from random permutations. More importantly, exploiting our distinguishers, we give the first practical attack on 11-round SKINNY-128-128 in the single-key setting (a theoretical attack reaches 16 rounds). Finally, using the same ideas, we provide a concise explanation on the existing distinguishers for round-reduced AES.
2020
TOSC
Improved Meet-in-the-Middle Preimage Attacks against AES Hashing Modes 📺
Hashing modes are ways to convert a block cipher into a hash function, and those with AES as the underlying block cipher are referred to as AES hashing modes. Sasaki in 2011, introduced the first preimage attack against AES hashing modes with the AES block cipher reduced to 7 rounds, by the method of meet-in-the-middle. In his attack, the key-schedules are not taken into account. Hence, the same attack applies to all three versions of AES. In this paper, by introducing neutral bits from the key, extra degree of freedom is gained, which is utilized in two ways, i.e., to reduce the time complexity and to extend the attack to more rounds. As an immediate result, the complexities of 7-round pseudo-preimage attacks are reduced from 2120 to 2104, 296, and 296 for AES-128, AES-192, and AES-256, respectively. By carefully choosing the neutral bits from the key to cancel those from the state, the attack is extended to 8 rounds for AES-192 and AES-256 with complexities 2112 and 296. Similar results are obtained for Kiasu-BC, a tweakable block cipher based on AES-128, and interestingly the additional input tweak helps reduce the complexity and extend the attack to one more round. To the best of our knowledge, these are the first preimage attacks against 8-round AES hashing modes.