CryptoDB
Thinh Pham
Publications
Year
Venue
Title
2022
TCHES
RISC-V Instruction Set Extensions for Lightweight Symmetric Cryptography
Abstract
The NIST LightWeight Cryptography (LWC) selection process aims to standardise cryptographic functionality which is suitable for resource-constrained devices. Since the outcome is likely to have significant, long-lived impact, careful evaluation of each submission with respect to metrics explicitly outlined in the call is imperative. Beyond the robustness of submissions against cryptanalytic attack, metrics related to their implementation (e.g., execution latency and memory footprint) form an important example. Aiming to provide evidence allowing richer evaluation with respect to such metrics, this paper presents the design, implementation, and evaluation of one separate Instruction Set Extension (ISE) for each of the 10 LWC final round submissions, namely Ascon, Elephant, GIFT-COFB, Grain-128AEADv2, ISAP, PHOTON-Beetle, Romulus, Sparkle, TinyJAMBU, and Xoodyak; although we base the work on use of RISC-V, we argue that it provides more general insight.
2021
TCHES
An Instruction Set Extension to Support Software-Based Masking
📺
Abstract
In both hardware and software, masking can represent an effective means of hardening an implementation against side-channel attack vectors such as Differential Power Analysis (DPA). Focusing on software, however, the use of masking can present various challenges: specifically, it often 1) requires significant effort to translate any theoretical security properties into practice, and, even then, 2) imposes a significant overhead in terms of efficiency. To address both challenges, this paper explores the use of an Instruction Set Extension (ISE) to support masking in software-based implementations of a range of (symmetric) cryptographic kernels including AES: we design, implement, and evaluate such an ISE, using RISC-V as the base ISA. Our ISE-supported first-order masked implementation of AES, for example, is an order of magnitude more efficient than a software-only alternative with respect to both execution latency and memory footprint; this renders it comparable to an unmasked implementation using the same metrics, but also first-order secure.
2020
TCHES
FENL: an ISE to mitigate analogue micro-architectural leakage
📺
Abstract
Ge et al. [GYH18] propose the augmented ISA (or aISA), a central tenet of which is the selective exposure of micro-architectural resources via a less opaque abstraction than normal. The aISA proposal is motivated by the need for control over such resources, for example to implement robust countermeasures against microarchitectural attacks. In this paper, we apply an aISA-style approach to challenges stemming from analogue micro-architectural leakage; examples include power-based Hamming weight and distance leakage from relatively fine-grained resources (e.g., pipeline registers), which are not exposed in, and so cannot be reliably controlled via, a normal ISA. Specifically, we design, implement, and evaluate an ISE named FENL: the ISE acts as a fence for leakage, preventing interaction between, and hence leakage from, instructions before and after it in program order. We demonstrate that the implementation and use of FENL has relatively low overhead, and represents an effective tool for systematically localising and reducing leakage.
Coauthors
- Hao Cheng (1)
- Si Gao (2)
- Johann Großschädl (2)
- Ben Marshall (3)
- Dan Page (1)
- Daniel Page (2)
- Thinh Pham (3)
- Francesco Regazzoni (1)