International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Hussien Othman

Publications

Year
Venue
Title
2021
CRYPTO
Quadratic Secret Sharing and Conditional Disclosure of Secrets 📺
Amos Beimel Hussien Othman Naty Peter
There is a huge gap between the upper and lower bounds on the share size of secret-sharing schemes for arbitrary $n$-party access structures, and consistent with our current knowledge the optimal share size can be anywhere between polynomial in $n$ and exponential in $n$. For linear secret-sharing schemes, we know that the share size for almost all $n$-party access structures must be exponential in $n$. Furthermore, most constructions of efficient secret-sharing schemes are linear. We would like to study larger classes of secret-sharing schemes with two goals. On one hand, we want to prove lower bounds for larger classes of secret-sharing schemes, possibly shedding some light on the share size of general secret-sharing schemes. On the other hand, we want to construct efficient secret-sharing schemes for access structures that do not have efficient linear secret-sharing schemes. Given this motivation, Paskin-Cherniavsky and Radune (ITC'20) defined and studied a new class of secret-sharing schemes in which the shares are generated by applying degree-$d$ polynomials to the secret and some random field elements. The special case $d=1$ corresponds to linear and multi-linear secret-sharing schemes. We define and study two additional classes of polynomial secret-sharing schemes: (1) schemes in which for every authorized set the reconstruction of the secret is done using polynomials and (2) schemes in which both sharing and reconstruction are done by polynomials. For linear secret-sharing schemes, schemes with linear sharing and schemes with linear reconstruction are equivalent. We give evidence that for polynomial secret-sharing schemes, schemes with polynomial sharing are probably stronger than schemes with polynomial reconstruction. We also prove lower bounds on the share size for schemes with polynomial reconstruction. On the positive side, we provide constructions of secret-sharing schemes and conditional disclosure of secrets (CDS) protocols with quadratic sharing and reconstruction. We extend a construction of Liu et al. (CRYPTO'17) and construct optimal quadratic $k$-server CDS protocols for functions $f:[N]^k\rightarrow \set{0,1}$ with message size $O(N^{(k-1)/3})$. We show how to transform our quadratic $k$-server CDS protocol to a robust CDS protocol, and use the robust CDS protocol to construct quadratic secret-sharing schemes for arbitrary access structures with share size $O(2^{0.705n})$; this is better than the best known share size of $O(2^{0.7576n})$ for linear secret-sharing schemes and worse than the best known share size of $O(2^{0.585n})$ for general secret-sharing schemes.
2020
EUROCRYPT
Evolving Ramp Secret Sharing with a Small Gap 📺
Amos Beimel Hussien Othman
Evolving secret-sharing schemes, introduced by Komargodski, Naor, and Yogev (TCC 2016b), are secret-sharing schemes in which there is no a-priory upper bound on the number of parties that will participate. The parties arrive one by one and when a party arrives the dealer gives it a share; the dealer cannot update this share when other parties arrive. Motivated by the fact that when the number of parties is known, ramp secret-sharing schemes are more efficient than threshold secret-sharing schemes, we study evolving ramp secret-sharing schemes. Specifically, we study evolving $(b(j),g(j))$-ramp secret-sharing schemes, where $g,b: \NN\to \NN$ are non-decreasing functions. In such schemes, any set of parties that for some $j$ contains $g(j)$ parties from the first parties that arrive can reconstruct the secret, and any set such that for every $j$ contains less than $b(j)$ parties from the first $j$ parties that arrive cannot learn any information about the secret. We focus on the case that the gap is small, namely $g(j)-b(j)=j^{\beta}$ for $0<\beta<1$. We show that there is an evolving ramp secret-sharing scheme with gap $t^{\beta}$, in which the share size of the $j$-th party is $\tilde{O}(j^{4-\frac{1}{\log^2 {1/\beta}}})$. Furthermore, we show that our construction results in much better share size for fixed values of $\beta$, i.e., there is an evolving ramp secret-sharing scheme with gap $\sqrt{j}$, in which the share size of the $j$-th party is $\tilde{O}(j)$. Our construction should be compared to the best known evolving $g(j)$-threshold secret-sharing schemes (i.e., when $b(j)=g(j)-1$) in which the share size of the $j$-th party is $\tilde{O}(j^4)$. Thus, our construction offers a significant improvement for every constant $\beta$, showing that allowing a gap between the sizes of the authorized and unauthorized sets can reduce the share size. In addition, we present an evolving $(k/2,k)$-ramp secret-sharing scheme for a constant $k$ (which can be very big), where any set of parties of size at least $k$ can reconstruct the secret and any set of parties of size at most $k/2$ cannot learn any information about the secret. The share size of the $j$-th party in our construction is $O(\log k\log j)$. This is an improvement over the best known evolving $k$-threshold secret-sharing schemes in which the share size of the $j$-th party is $O(k\log j)$.

Coauthors

Amos Beimel (2)
Hussien Othman (2)
Naty Peter (1)