CryptoDB
Federico Pintore
Publications
Year
Venue
Title
2022
EUROCRYPT
Group Signature and More from Isogenies and Lattices: Generic, Simple, and Efficient
📺
Abstract
We construct an efficient dynamic group signature (or more generally an accountable ring signature) from isogeny and lattice assumptions. Our group signature is based on a simple generic construction that can be instantiated by cryptographically hard group actions such as the CSIDH group action or an MLWE-based group action. The signature is of size $O(¥log N)$, where $N$ is the number of users in the group. Our idea builds on the recent efficient OR-proof by Beullens, Katsumata, and Pintore (Asiacrypt'20), where we efficiently add a proof of valid ciphertext to their OR-proof and further show that the resulting non-interactive zero-knowledge proof system is ¥emph{online extractable}.
Our group signatures satisfy more ideal security properties compared to previously known constructions, while simultaneously having an attractive signature size. The signature size of our isogeny-based construction is an order of magnitude smaller than all previously known post-quantum group signatures (e.g., 6.6 KB for 64 members). In comparison, our lattice-based construction has a larger signature size (e.g., either 126 KB or 89 KB for 64 members depending on the satisfied security property). However, since the $O(¥cdot)$-notation hides a very small constant factor, it remains small even for very large group sizes, say $2^{20}$.
2020
PKC
Lossy CSI-FiSh: Efficient Signature Scheme with Tight Reduction to Decisional CSIDH-512
📺
Abstract
Recently, Beullens, Kleinjung, and Vercauteren (Asiacrypt’19) provided the first practical isogeny-based digital signature, obtained from the Fiat-Shamir (FS) paradigm. They worked with the CSIDH-512 parameters and passed through a new record class group computation. However, as with all standard FS signatures, the security proof is highly non-tight and the concrete parameters are set under the heuristic that the only way to attack the scheme is by finding collisions for a hash function. In this paper, we propose an FS-style signature scheme, called Lossy CSI-FiSh, constructed using the CSIDH-512 parameters and with a security proof based on the “Lossy Keys” technique introduced by Kiltz, Lyubashevsky and Schaffner (Eurocrypt’18). Lossy CSI-FiSh is provably secure under the same assumption which underlies the security of the key exchange protocol CSIDH (Castryck et al. (Asiacrypt’18)) and is almost as efficient as CSI-FiSh. For instance, aiming for small signature size, our scheme is expected to take around $$approx 800$$ ms to sign/verify while producing signatures of size $$approx 280$$ bytes. This is only twice slower than CSI-FiSh while having similar signature size for the same parameter set. As an additional benefit, our scheme is by construction secure both in the classical and quantum random oracle model.
2020
ASIACRYPT
Scalable Ciphertext Compression Techniques for Post-Quantum KEMs and their Applications
📺
Abstract
A multi-recipient key encapsulation mechanism, or mKEM, provides a scalable solution to securely communicating to a large group, and offers savings in both bandwidth and computational cost compared to the trivial solution of communicating with each member individually. All prior works on mKEM are only limited to classical assumptions and, although some generic constructions are known, they all require specific properties that are not shared by most post-quantum schemes.
In this work, we first provide a simple and efficient generic construction of mKEM that can be instantiated from versatile assumptions, including post-quantum ones. We then study these mKEM instantiations at a practical level using 8 post-quantum KEMs (which are lattice and isogeny-based NIST candidates), and CSIDH, and show that compared to the trivial solution, our mKEM offers savings of at least one order of magnitude in the bandwidth, and make encryption time shorter by a factor ranging from 1.92 to 35. Additionally, we show that by combining mKEM with the TreeKEM protocol used by MLS – an IETF draft for secure group messaging – we obtain significant bandwidth savings.
2020
ASIACRYPT
Calamari and Falafl: Logarithmic (Linkable) Ring Signatures from Isogenies and Lattices
📺
Abstract
We construct efficient ring signatures (RS) from isogeny and
lattice assumptions. Our ring signatures are based on a logarithmic OR
proof for group actions. We instantiate this group action by either the
CSIDH group action or an MLWE-based group action to obtain our
isogeny-based or lattice-based RS scheme, respectively. Even though the
OR proof has a binary challenge space and therefore requires a number of
repetitions which is linear in the security parameter, the sizes of our ring
signatures are small and scale better with the ring size N than previously
known post-quantum ring signatures. We also construct linkable ring
signatures (LRS) that are almost as efficient as the non-linkable variants.
The isogeny-based scheme produces signatures whose size is an order of
magnitude smaller than all previously known logarithmic post-quantum
ring signatures, but it is relatively slow (e.g. 5.5 KB signatures and 79
s signing time for rings with 8 members). In comparison, the lattice-based
construction is much faster, but has larger signatures (e.g. 30 KB
signatures and 90 ms signing time for the same ring size). For small ring
sizes our lattice-based ring signatures are slightly larger than state-of-the-
art schemes, but they are smaller for ring sizes larger than N approximately 1024.
Coauthors
- Ward Beullens (2)
- Samuel Dobson (1)
- Ali El Kaafarani (1)
- Shuichi Katsumata (4)
- Kris Kwiatkowski (1)
- Yi-Fu Lai (1)
- Federico Pintore (4)
- Thomas Prest (1)