CryptoDB
Chloé Hébant
Publications
Year
Venue
Title
2023
PKC
Tracing a Linear Subspace: Application to Linearly-Homomorphic Group Signatures
Abstract
When multiple users have power or rights, there is always the risk of corruption or abuse. Whereas there is no solution to avoid those malicious behaviors, from the users themselves or from external adversaries, one can strongly deter them with tracing capabilities that will later help to revoke the rights or negatively impact the reputation. On the other hand, privacy is an important issue in many applications, which seems in contradiction with traceability.
In this paper, we first extend usual tracing techniques based on codes so that not just one contributor can be traced but the full collusion. In a second step, we embed suitable codes into a set~$\mathcal V$ of vectors in such a way that, given a vector~$\mathbf U \in \mathsf{span}(\mathcal V)$, the underlying code can be used to efficiently find a minimal subset~$\mathcal X \subseteq \mathcal V$ such that~$\mathbf U \in \mathsf{span}(\mathcal X)$.
To meet privacy requirements, we then make the vectors of~$\mathsf{span}(\cV)$ anonymous while keeping the efficient tracing mechanism. As an interesting application, we formally define the notion of linearly-homomorphic group signatures and propose a construction from our codes: multiple signatures can be combined to sign any linear subspace in an anonymous way, but a tracing authority is able to trace back all the contributors involved in the signatures of that subspace.
2020
PKC
Linearly-Homomorphic Signatures and Scalable Mix-Nets
📺
Abstract
Anonymity is a primary ingredient for our digital life. Several tools have been designed to address it such as, for authentication, blind signatures, group signatures or anonymous credentials and, for confidentiality, randomizable encryption or mix-nets. When it comes to complex electronic voting schemes, random shuffling of authenticated ciphertexts with mix-nets is the only known tool. However, it requires huge and complex zero-knowledge proofs to guarantee the actual permutation of the initial ciphertexts in a privacy-preserving way. In this paper, we propose a new approach for proving correct shuffling of signed ElGamal ciphertexts: the mix-servers can simply randomize individual ballots, which means the ciphertexts, the signatures, and the verification keys, with an additional global proof of constant size, and the output will be publicly verifiable. The security proof is in the generic bilinear group model. The computational complexity for the each mix-server is linear in the number of ballots. Verification is also linear in the number of ballots, but independent of the number of rounds of mixing. This leads to a new highly scalable technique. Our construction makes use of linearly-homomorphic signatures, with new features, that are of independent interest.
Coauthors
- Chloé Hébant (2)
- Duong Hieu Phan (1)
- David Pointcheval (2)
- Robert Schädlich (1)