CryptoDB
Shanquan Tian
Publications
Year
Venue
Title
2020
TCHES
Parameterized Hardware Accelerators for Lattice-Based Cryptography and Their Application to the HW/SW Co-Design of qTESLA
📺
Abstract
This paper presents a set of efficient and parameterized hardware accelerators that target post-quantum lattice-based cryptographic schemes, including a versatile cSHAKE core, a binary-search CDT-based Gaussian sampler, and a pipelined NTT-based polynomial multiplier, among others. Unlike much of prior work, the accelerators are fully open-sourced, are designed to be constant-time, and can be parameterized at compile-time to support different parameters without the need for re-writing the hardware implementation. These flexible, publicly-available accelerators are leveraged to demonstrate the first hardware-software co-design using RISC-V of the post-quantum lattice-based signature scheme qTESLA with provably secure parameters. In particular, this work demonstrates that the NIST’s Round 2 level 1 and level 3 qTESLA variants achieve over a 40-100x speedup for key generation, about a 10x speedup for signing, and about a 16x speedup for verification, compared to the baseline RISC-V software-only implementation. For instance, this corresponds to execution in 7.7, 34.4, and 7.8 milliseconds for key generation, signing, and verification, respectively, for qTESLA’s level 1 parameter set on an Artix-7 FPGA, demonstrating the feasibility of the scheme for embedded applications.
Coauthors
- Nina Bindel (1)
- Bernhard Jungk (1)
- Patrick Longa (1)
- Jakub Szefer (1)
- Shanquan Tian (1)
- Wen Wang (1)