CryptoDB
Yu-Hsuan Huang
Publications
Year
Venue
Title
2024
CRYPTO
On the (In)Security of the BUFF Transform
Abstract
The BUFF transform is a generic transformation for digital signature schemes, with the purpose of obtaining additional security properties beyond standard unforgeability, e.g., exclusive ownership and non-resignability. In the call for additional post-quantum signatures, these were explicitly mentioned by the NIST as ``additional desirable security properties'', and some of the submissions indeed refer to the BUFF transform with the purpose of achieving them, while some other submissions follow the design of the BUFF transform without mentioning it explicitly.
In this work, we show the following negative results regarding the non-resignability property in general, and the BUFF transform in particular. In the plain model, we observe by means of a simple attack that any signature scheme for which the message has a high entropy given the signature does not satisfy the non-resignability property (while non-resignability is trivially not satisfied if the message can be efficiently computed from its signature). Given that the BUFF transform has high entropy in the message given the signature, it follows that the BUFF transform does not achieve non-resignability whenever the random oracle is instantiated with a hash function, no matter what hash function.
When considering the random oracle model (ROM), the matter becomes slightly more delicate since prior works did not rigorously define the non-resignability property in the ROM. For the natural extension of the definition to the ROM, we observe that our impossibility result still holds, despite there having been positive claims about the non-resignability of the BUFF transform in the ROM. Indeed, prior claims of the non-resignability of the BUFF transform rely on faulty argumentation.
On the positive side, we prove that a salted version of the BUFF transform satisfies a slightly weaker variant of non-resignability in the ROM, covering both classical and quantum attacks, if the entropy requirement in the (weakened) definition of non-resignability is statistical; for the computational variant, we show yet another negative result.
2024
TCC
Hide-and-Seek and the Non-Resignability of the BUFF Transform
Abstract
The BUFF transform, due to Cremers et al. (S&P'21), is a generic transformation for digital signature scheme, with the purpose of obtaining additional security guarantees beyond unforgeability: exclusive ownership, message-bound signatures, and non-resignability. Non-resignability (which essentially challenges an adversary to re-sign an unknown message for which it only obtains the signature) turned out to be a delicate matter, as recently Don et al. (CRYPTO'24) showed that the initial definition is essentially unachieveable; in particular, it is not achieved by the BUFF transfom. This led to the introduction of new, weakened versions of non-resignability, which are (potentially) achievable. In particular, it was shown that a salted variant of the BUFF transform does achieves some weakened version of non-resignability. However, the salting requires additional randomness and leads to slightly larger signatures. Whether the original BUFF transform also achieves some meaningful notion of non-resignability remained a natural open question.
In this work, we answer this question in the affirmative. We show that the BUFF transform satisfies the (almost) strongest notions of non-resignability one can hope for, facing the known impossibility results. Our results cover both the statistical and the computational case, and both the classical and the quantum setting. At the core of our analysis lies a new security game for random oracles that we call Hide-and-Seek. While seemingly innocent at first glance, it turns out to be surprisingly challenging to rigorously analyze.
2023
CRYPTO
Fixing and Mechanizing the Security Proof of Fiat-Shamir with Aborts and Dilithium
Abstract
We extend and consolidate the security justification for the Dilithium signature scheme. In particular, we identify a subtle but crucial gap that appears in several ROM and QROM security proofs for signature schemes that are based on the Fiat-Shamir with aborts paradigm, including Dilithium. The gap lies in the CMA-to-NMA reduction and was uncovered when trying to formalize a variant of the QROM security proof by Kiltz, Lyubashevsky, and Schaffner (Eurocrypt 2018). The gap was confirmed by the authors, and there seems to be no simple patch for it. We provide new, fixed proofs for the affected CMA-to-NMA reduction, both for the ROM and the QROM, and we perform a concrete security analysis for the case of Dilithium to show that the claimed security level is still valid after addressing the gap. Furthermore, we offer a fully mechanized ROM proof for the CMA-security of Dilithium in the EasyCrypt proof assistant. Our formalization includes several new tools and techniques of independent interest for future formal verification results.
2022
TCC
Adaptive versus Static Multi-oracle Algorithms, and Quantum Security of a Split-key PRF
Abstract
In the first part of the paper, we show a generic compiler that transforms any oracle algorithm that can query multiple oracles adaptively, i.e., can decide on which oracle to query at what point dependent on previous oracle responses, into a static algorithm that fixes these choices at the beginning of the execution. Compared to naive ways of achieving this, our compiler controls the blow up in query complexity for each oracle individually, and causes a very mild blow up only.
In the second part of the paper, we use our compiler to show the security of the very efficient hash-based split-key PRF proposed by Giacon, Heuer and Poettering (PKC 2018), in the quantum random oracle model. Using a split-key PRF as the key-derivation function gives rise to a secure a KEM combiner. Thus, our result shows that the hash-based construction of Giacon et al. can be safely used in the context of quantum attacks, for instance to combine a well-established but only classically-secure KEM with a candidate KEM that is believed to be quantum-secure.
Our security proof for the split-key PRF crucially relies on our adaptive-to-static compiler, but we expect our compiler to be useful beyond this particular application. Indeed, we discuss a couple of other, known results from the literature that would have profitted from our compiler, in that these works had to go though serious complications in oder to deal with adaptivity.
2021
EUROCRYPT
On the Compressed-Oracle Technique, and Post-Quantum Security of Proofs of Sequential Work
📺
Abstract
We revisit the so-called compressed oracle technique, introduced by Zhandry for analyzing quantum algorithms in the quantum random oracle model (QROM). To start off with, we offer a concise exposition of the technique, which easily extends to the parallel-query QROM, where in each query-round the considered algorithm may make several queries to the QROM in parallel. This variant of the QROM allows for a more fine-grained query-complexity analysis.
Our main technical contribution is a framework that simplifies the use of (the parallel-query generalization of) the compressed oracle technique for proving query complexity results. With our framework in place, whenever applicable, it is possible to prove quantum query complexity lower bounds by means of purely classical reasoning. More than that, for typical examples the crucial classical observations that give rise to the classical bounds are sufficient to conclude the corresponding quantum bounds.
We demonstrate this on a few examples, recovering known results but also obtaining new results. Our main target is the hardness of finding a q-chain with fewer than q parallel queries, i.e., a sequence x_0, x_1, ..., x_q with x_i = H(x_{i-1}) for all 1 \leq i \leq q.
The above problem of finding a hash chain is of fundamental importance in the context of proofs of sequential work. Indeed, as a concrete cryptographic application of our techniques, we prove quantum security of the ``Simple Proofs of Sequential Work'' by Cohen and Pietrzak.
Coauthors
- Manuel Barbosa (1)
- Gilles Barthe (1)
- Kai-Min Chung (1)
- Christian Doczkal (1)
- Jelle Don (4)
- Serge Fehr (5)
- Benjamin Grégoire (1)
- Yu-Hsuan Huang (5)
- Andreas Hülsing (1)
- Yi Lee (1)
- Tai-Ning Liao (1)
- Jyun-Jie Liao (1)
- Patrick Struck (2)
- Xiaodi Wu (1)