CryptoDB
Bruce Maggs
Publications
Year
Venue
Title
2021
CRYPTO
Puncturable Pseudorandom Sets and Private Information Retrieval with Near-Optimal Online Bandwidth and Time
📺
Abstract
Imagine one or more non-colluding servers each holding a large
public database, e.g., the repository of DNS entries. Clients would
like to access entries in this database without disclosing their
queries to the servers. Classical private information retrieval (PIR)
schemes achieve polylogarithmic bandwidth per query, but require the
server to perform linear computation per query, which is a
significant barrier towards deployment.
Several recent works showed, however, that by introducing a
one-time, per-client, off-line preprocessing phase, an
\emph{unbounded} number of client queries can be subsequently served
with sublinear online computation time per query (and the cost of the
preprocessing can be amortized over the unboundedly many queries).
Existing preprocessing PIR schemes (supporting unbounded queries), unfortunately, make undesirable tradeoffs to achieve sublinear online computation:
they are either significantly non-optimal in online time or bandwidth,
or require the servers to store
a linear amount of state per client or even per query, or require
polylogarithmically many non-colluding servers.
We propose a novel 2-server preprocessing PIR scheme that achieves
$\widetilde{O}(\sqrt{n})$ online computation per query and
$\widetilde{O}(\sqrt{n})$ client storage, while
preserving the polylogarithmic online bandwidth of classical PIR
schemes. Both the online bandwidth and computation
are optimal up to a poly-logarithmic factor.
In our construction, each server stores only the original
database and nothing extra, and each online query is served within a
single round trip. Our construction relies on the standard LWE
assumption. As an important stepping stone, we propose new, more
generalized definitions for a cryptographic object called a Privately
Puncturable Pseudorandom Set, and give novel constructions that depart
significantly from prior approaches.
Coauthors
- Waqar Aqeel (1)
- Balakrishnan Chandrasekaran (1)
- Bruce Maggs (1)
- Elaine Shi (1)