International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

T-H. Hubert Chan

Publications

Year
Venue
Title
2023
EUROCRYPT
A Theory of Composition for Differential Obliviousness
Differential obliviousness (DO) is a privacy notion which guarantees that the access patterns of a program satisfies differential privacy. Differential obliviousness was studied in a sequence of recent works as a relaxation of full obliviousness. Earlier works showed that DO not only allows us to circumvent the logarithmic-overhead barrier of fully oblivious algorithms, in many cases, it also allows us to achieve polynomial speedup over full obliviousness, since it avoids ``padding to the worst-case'' behavior of fully oblivious algorithms. Despite the promises of differential obliviousness (DO), a significant barrier that hinders its broad application is the lack of composability. In particular, when we apply one DO algorithm to the output of another DO algorithm, the composed algorithm may no longer be DO (with reasonable parameters). More specifically, the outputs of the first DO algorithm on two neighboring inputs may no longer be neighboring, and thus we cannot directly benefit from the DO guarantee of the second algorithm. In this work, we are the first to explore a theory of composition for differentially oblivious algorithms. We propose a refinement of the DO notion called $(\epsilon, \delta)$-neighbor-preserving-DO, or $(\epsilon, \delta)$-NPDO for short, and we prove that our new notion indeed provides nice compositional guarantees. In this way, the algorithm designer can easily track the privacy loss when composing multiple DO algorithms. We give several example applications to showcase the power and expressiveness of our new NPDO notion. One of these examples is a result of independent interest: we use the compositional framework to prove an optimal privacy amplification theorem for the differentially oblivious shuffle model. In other words, we show that for a class of distributed differentially private mechanisms in the shuffle-model, one can replace the perfectly secure shuffler with a DO shuffler, and nonetheless, enjoy almost the same privacy amplification enabled by a shuffler.
2021
CRYPTO
Game-Theoretic Fairness Meets Multi-Party Protocols: The Case of Leader Election 📺
Kai-Min Chung T-H. Hubert Chan Ting Wen Elaine Shi
Suppose that $n$ players want to elect a random leader and they communicate by posting messages to a common broadcast channel. This problem is called leader election, and it is fundamental to the distributed systems and cryptography literature. Recently, it has attracted renewed interests due to its promised applications in decentralized environments. In a game theoretically fair leader election protocol, roughly speaking, we want that even a majority coalition cannot increase its own chance of getting elected, nor hurt the chance of any honest individual. The folklore tournament-tree protocol, which completes in logarithmically many rounds, can easily be shown to satisfy game theoretic security. To the best of our knowledge, no sub-logarithmic round protocol was known in the setting that we consider. We show that by adopting an appropriate notion of approximate game-theoretic fairness, and under standard cryptographic assumption, we can achieve $(1-1/2^{\Theta(r)})$-fairness in $r$ rounds for $\Theta(\log \log n) \leq r \leq \Theta(\log n)$, where $n$ denotes the number of players. In particular, this means that we can approximately match the fairness of the tournament tree protocol using as few as $O(\log \log n)$ rounds. We also prove a lower bound showing that logarithmically many rounds are necessary if we restrict ourselves to ``perfect'' game-theoretic fairness and protocols that are ``very similar in structure'' to the tournament-tree protocol. Although leader election is a well-studied problem in other contexts in distributed computing, our work is the first exploration of the round complexity of {\it game-theoretically fair} leader election in the presence of a possibly majority coalition. As a by-product of our exploration, we suggest a new, approximate game-theoretic fairness notion, called ``approximate sequential fairness'', which provides a more desirable solution concept than some previously studied approximate fairness notions.