International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Sébastien Lord

Publications

Year
Venue
Title
2024
CIC
Uncloneable Quantum Advice
<p>The famous no-cloning principle has been shown recently to enable a number of uncloneable cryptographic primitives, including the copy-protection of certain functionalities. Here we address for the first time unkeyed quantum uncloneablity, via the study of a complexity-theoretic tool that enables a computation, but that is natively unkeyed: quantum advice. Remarkably, this is an application of the no-cloning principle in a context where the quantum states of interest are not chosen by a random process. We establish unconditional constructions for promise problems admitting uncloneable quantum advice and, assuming the feasibility of quantum copy-protecting certain functions, for languages with uncloneable advice. Along the way, we note that state complexity classes, introduced by Rosenthal and Yuen (ITCS 2022) — which concern the computational difficulty of synthesizing sequences of quantum states — can be naturally generalized to obtain state cloning complexity classes. We make initial observations on these classes, notably obtaining a result analogous to the existence of undecidable problems.</p><p>Our proof technique defines and constructs ingenerable sequences of finite bit strings, essentially meaning that they cannot be generated by any uniform circuit family with non-negligible probability. We then prove a generic result showing that the difficulty of accomplishing a computational task on uniformly random inputs implies its difficulty on any fixed, ingenerable sequence. We use this result to derandomize quantum cryptographic games that relate to cloning, and then incorporate a result of Kundu and Tan (arXiv 2022) to obtain uncloneable advice. Applying this two-step process to a monogamy-of-entanglement game yields a promise problem with uncloneable advice, and applying it to the quantum copy-protection of pseudorandom functions with super-logarithmic output lengths yields a language with uncloneable advice. </p>
2021
TCC
Secure Software Leasing Without Assumptions 📺
Quantum cryptography is known for enabling functionalities that are unattainable using classical information alone. Recently, Secure Software Leasing (SSL) has emerged as one of these areas of interest. Given a target circuit C from a circuit class, SSL produces an encoding of C that enables a recipient to evaluate C, and also enables the originator of the software to verify that the software has been returned --- meaning that the recipient has relinquished the possibility of any further use of the software. Clearly, such a functionality is unachievable using classical information alone, since it is impossible to prevent a user from keeping a copy of the software. Recent results have shown the achievability of SSL using quantum information for a class of functions called compute-and-compare (these are a generalization of the well-known point functions). These prior works, however all make use of setup or computational assumptions. Here, we show that SSL is achievable for compute-and-compare circuits without any assumptions. Our technique involves the study of quantum copy protection, which is a notion related to SSL, but where the encoding procedure inherently prevents a would-be quantum software pirate from splitting a single copy of an encoding for C into two parts, each of which enables a user to evaluate C. We show that point functions can be copy-protected without any assumptions, for a novel security definition involving one honest and one malicious evaluator; this is achieved by showing that from any quantum message authentication code, we can derive such an honest-malicious copy protection scheme. We then show that a generic honest-malicious copy protection scheme implies SSL; by prior work, this yields SSL for compute-and-compare functions.