CryptoDB
HyungChul Kang
Publications
Year
Venue
Title
2024
CRYPTO
Exploring the Advantages and Challenges of Fermat NTT in FHE Acceleration
Abstract
Recognizing the importance of a fast and resource-efficient polynomial multiplication in homomorphic encryption, in this paper, we design a \emph{multiplier-less} number theoretic transform using a Fermat number as an auxiliary modulus. To make this algorithm scalable with the degree of polynomial, we apply a univariate to multivariate polynomial ring transformation.
We develop an accelerator architecture for fully homomorphic encryption using these algorithmic techniques for efficient multivariate polynomial multiplication. For practical homomorphic encryption application benchmarks, the hardware accelerator achieves a 1,200$\times$ speed-up compared to software implementations. Finally, we conclude the paper by discussing the advantages and limitations of the proposed polynomial multiplication method.
2022
EUROCRYPT
High-Precision Bootstrapping for Approximate Homomorphic Encryption by Error Variance Minimization
📺
Abstract
The Cheon-Kim-Kim-Song (CKKS) scheme (Asiacrypt'17) is one of the most promising homomorphic encryption (HE) schemes as it enables privacy-preserving computing over real (or complex) numbers. It is known that bootstrapping is the most challenging part of the CKKS scheme. Further, homomorphic evaluation of modular reduction is the core of the CKKS bootstrapping. As modular reduction is not represented by the addition and multiplication of complex numbers, approximate polynomials for modular reduction should be used. The best-known techniques (Eurocrypt'21) use a polynomial approximation for trigonometric functions and their composition. However, all the previous methods are based on an indirect approximation, and thus it requires lots of multiplicative depth to achieve high accuracy. This paper proposes a direct polynomial approximation of modular reduction for CKKS bootstrapping, which is optimal in error variance and depth. Further, we propose an efficient algorithm, namely the lazy baby-step giant-step (BSGS) algorithm, to homomorphically evaluate the approximate polynomial, utilizing the lazy relinearization/rescaling technique. The lazy-BSGS reduces the computational complexity by half compared to the ordinary BSGS algorithm. The performance improvement for the CKKS scheme by the proposed algorithm is verified by implementation using HE libraries. The implementation results show that the proposed method has a multiplicative depth of 10 for modular reduction to achieve the state-of-the-art accuracy, while the previous methods have depths of 11 to 12. Moreover, we achieve higher accuracy within a small multiplicative depth, for example, 93-bit within multiplicative depth 11.
Coauthors
- Aikata Aikata (1)
- Maxim Deryabin (1)
- HyungChul Kang (2)
- Yongjune Kim (1)
- Andrey Kim (1)
- Young-Sik Kim (1)
- Sunmin Kwon (1)
- Joseph Lano (1)
- Joon-Woo Lee (1)
- Yongwoo Lee (1)
- Ahmet Can Mert (1)
- Anisha Mukherjee (1)
- Sujoy Sinha Roy (1)