International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Mincheol Son

Publications

Year
Venue
Title
2024
TOSC
FRAST: TFHE-Friendly Cipher Based on Random S-Boxes
A transciphering framework, also known as hybrid homomorphic encryption, is a practical method of combining a homomorphic encryption (HE) scheme with a symmetric cipher in the client-server model to reduce computational and communication overload on the client side. As a server homomorphically evaluates a symmetric cipher in this framework, new design rationales are required for “HE-friendly” ciphers that take into account the specific properties of the HE schemes. In this paper, we propose a new TFHE-friendly cipher, dubbed FRAST, with a TFHE-friendly round function based on a random S-box to minimize the number of rounds. The round function of FRAST can be efficiently evaluated in TFHE by a new optimization technique, dubbed double blind rotation. Combined with our new WoP-PBS method, the double blind rotation allows computing multiple S-box calls in the round function of FRAST at the cost of a single S-box call. In this way, FRAST enjoys 2.768 (resp. 10.57) times higher throughput compared to Kreyvium (resp. Elisabeth) for TFHE keystream evaluation in the offline phase of the transciphering framework at the cost of slightly larger communication overload.
2022
EUROCRYPT
Rubato: Noisy Ciphers for Approximate Homomorphic Encryption 📺
A transciphering framework converts a symmetric ciphertext into a homomorphic ciphertext on the server-side, reducing computational and communication overload on the client-side. In Asiacrypt 2021, Cho et al. proposed the RtF framework that supports approximate computation. In this paper, we propose a family of noisy ciphers, dubbed Rubato, with a novel design strategy of introducing noise to a symmetric cipher of a low algebraic degree. With this strategy, the multiplicative complexity of the cipher is significantly reduced, compared to existing HE-friendly ciphers, without degrading the overall security. More precisely, given a moderate block size (16 to 64), Rubato enjoys a low multiplicative depth (2 to 5) and a small number of multiplications per encrypted word (2.1 to 6.25) at the cost of slightly larger ciphertext expansion (1.26 to 1.31). The security of Rubato is supported by comprehensive analysis including symmetric and LWE cryptanalysis. Compared to HERA within the RtF framework, client-side and server-side throughput is improved by 22.9% and 32.2%, respectively, at the cost of only 1.6% larger ciphertext expansion.