International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Yao-Ting Lin

Publications

Year
Venue
Title
2024
EUROCRYPT
Pseudorandom Isometries
We introduce a new notion called $\mathcal{Q}$-secure pseudorandom isometries (PRI). A pseudorandom isometry is an efficient quantum circuit that maps an $n$-qubit state to an $(n+m)$-qubit state in an isometric manner. In terms of security, we require that the output of a $q$-fold PRI on $\rho$, for $ \rho \in \mathcal{Q}$, for any polynomial $q$, should be computationally indistinguishable from the output of a $q$-fold Haar isometry on $\rho$. By fine-tuning $\mathcal{Q}$, we recover many existing notions of pseudorandomness. We present a construction of PRIs and assuming post-quantum one-way functions, we prove the security of $\mathcal{Q}$-secure pseudorandom isometries (PRI) for different interesting settings of $\mathcal{Q}$. We also demonstrate many cryptographic applications of PRIs, including, length extension theorems for quantum pseudorandomness notions, MACs for quantum states, multi-copy secure public and private encryption schemes, and succinct quantum commitments.
2024
TCC
Cryptography in the Common Haar State Model: Feasibility Results and Separations
Common random string model is a popular model in classical cryptography. We study a quantum analogue of this model called the common Haar state (CHS) model. In this model, every party participating in the cryptographic system receives many copies of one or more i.i.d Haar random states. We study feasibility and limitations of cryptographic primitives in this model and its variants: 1) We present a construction of pseudorandom function-like states, that is optimal in terms of its query bound, with statistical security. As a consequence, by suitably instantiating the CHS model, we obtain a new approach to construct pseudorandom function-like states in the plain model. 2) We present new separations between pseudorandom function-like states (with super logarithmic length) and quantum cryptographic primitives, such as interactive key agreement and bit commitment, with classical communication. To show these separations, we show the indistinguishability of identical versus independent Haar states against LOCC (local operations, classical communication) adversaries.
2023
EUROCRYPT
Black-Box Separations for Non-Interactive Commitments in a Quantum World
Commitments are fundamental in cryptography. In the classical world, commitments are equivalent to the existence of one-way functions. It is also known that the most desired form of commitments in terms of their round complexity, i.e., non-interactive commitments, cannot be built from one-way functions in a black-box way [Mahmoody-Pass, Crypto’12]. However, if one allows the parties to use quantum computation and communication, it is known that non-interactive commitments (to classical bits) are in fact possible [Koshiba-Odaira, Arxiv’11 and Bitansky-Brakerski, TCC’21]. We revisit the assumptions behind non-interactive commitments in a quantum world and study whether they can be achieved using quantum computation and classical communication based on a black-box use of one-way functions. We prove that doing so is impossible, unless the Polynomial Compatibility Conjecture [Austrin et al. Crypto’22] is false. We further extend our impossibility to protocols with quantum decommitments. This complements the positive result of Bitansky and Brakerski [TCC’21], as they only required a classical decommitment message. Because non-interactive commitments can be based injective one-way functions, assuming the Polynomial Compatibility Conjecture, we also obtain a black-box separation between one-way functions and injective one-way functions (e.g., one-way permutations) even when the construction and the security reductions are allowed to be quantum. This improves the separation of Cao and Xue [Theoretical Computer Science’21] in which they only allowed the security reduction to be quantum. At a technical level, prove that sampling oracles at random from “sufficiently large” sets (of oracles) will make them one-way against polynomial-query adversaries who also get arbitrary polynomial-size quantum advice about the oracle. This gives a natural generalization of the recent results of Hhan et al. [Asiacrypt’19] and Chung et al. [FOCS’20].
2023
ASIACRYPT
On the (Im)possibility of Time-Lock Puzzles in the Quantum Random Oracle Model
Time-lock puzzles wrap a solution s inside a puzzle P in such a way that “solving” P to find s requires significantly more time than generating the pair (s, P), even if the adversary has access to parallel computing; hence it can be thought of as sending a message s to the future. It is known [Mahmoody, Moran, Vadhan, Crypto’11] that when the source of hardness is only a random oracle, then any puzzle generator with n queries can be (efficiently) broken by an adversary in O(n) rounds of queries to the oracle. In this work, we revisit time-lock puzzles in a quantum world by allowing the parties to use quantum computing and, in particular, access the random oracle in quantum superposition. An interesting setting is when the puzzle generator is efficient and classical, while the solver (who might be an entity developed in the future) is quantum-powered and is supposed to need a long sequential time to succeed. We prove that in this setting there is no construction of time-lock puzzles solely from quantum (accessible) random oracles. In particular, for any n-query classical puzzle generator, our attack only asks O(n) (also classical) queries to the random oracle, even though it does indeed run in quantum polynomial time if the honest puzzle solver needs quantum computing. Assuming perfect completeness, we also show how to make the above attack run in exactly n rounds while asking a total of m · n queries where m is the query complexity of the puzzle solver. This is indeed tight in the round complexity, as we also prove that a classical puzzle scheme of Mahmoody et al. is also secure against quantum solvers who ask n−1 rounds of queries. In fact, even for the fully classical case, our attack quantitatively improves the total queries of the attack of Mahmoody et al. for the case of perfect completeness from O(mn log n) to mn. Finally, assuming perfect completeness, we present an attack in the “dual” setting in which the puzzle generator is quantum while the solver is classical. We then ask whether one can extend our classical-query attack to the fully quantum setting, in which both the puzzle generator and the solver could be quantum. We show a barrier for proving such results unconditionally. In particular, we show that if the folklore simulation conjecture, first formally stated by Aaronson and Ambainis [arXiv’2009] is false, then there is indeed a time-lock puzzle in the quantum random oracle model that cannot be broken by classical adversaries. This result improves the previous barrier of Austrin et. al [Crypto’22] about key agreements (that can have interactions in both directions) to time-lock puzzles (that only include unidirectional communication).
2022
CRYPTO
On the Impossibility of Key Agreements from Quantum Random Oracles 📺
We study the following question, first publicly posed by Hosoyamada and Yamakawa in 2018. Can parties A, B with local quantum computing power rely (only) on a random oracle and classical communication to agree on a key? (Note that A, B can now query the random oracle at quantum superpositions.) We make the first progress on the question above and prove the following. – When only one of the parties A is classical and the other party B is quantum powered, as long as they ask a total of d oracle queries and agree on a key with probability 1, then there is always a way to break the key agreement by asking O(d^2) number of classical oracle queries. – When both parties can make quantum queries to the random oracle, we introduce a natural conjecture, which if true would imply attacks with poly(d) classical queries to the random oracle. Our conjecture, roughly speaking, states that the multiplication of any two degree-d real-valued polynomials over the Boolean hypercube of influence at most δ = 1/ poly(d) is nonzero. We then prove our conjecture for exponentially small influences, which leads to an (unconditional) classical 2^O(md)-query attack on any such key agreement protocol, where m is the random oracle’s output length. – Since our attacks are classical, we then ask whether it is possible to find such classical attacks in general. We prove a barrier for this approach, by showing that if the folklore “simulation conjecture” about the possibility of simulating efficient-query quantum algorithms classically is false, then that implies a possible quantum protocol that cannot be broken by classical adversaries.